How much is the total energy of an electron in the first orbit of a hydrogen atom equal to?
1. total energy of electron in \(1\text{st}\) orbit of \(\mathrm{He}^{+}\)
2. total energy of electron in \(3\text{rd}\) orbit of \(\mathrm{He}^{+}\)
3. total energy of electron in \(2\text{nd}\) orbit of \(\mathrm{Li}^{++}\)
4. total energy of electron in \(3\text{rd}\) orbit of \(\mathrm{Li}^{++}\)

Subtopic:  Bohr's Model of Atom |
 72%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

What is the ratio of the circumference of the first Bohr orbit for the electron in the hydrogen atom to the de-Broglie wavelength of electrons having the same velocity as the electron in the first Bohr orbit of the hydrogen atom?
1. \(1:1\)
2. \(1:2\)
3. \(1:4\)
4. \(2:1\)

Subtopic:  Bohr's Model of Atom |
 76%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

An electron revolves around a nucleus of charge \(Ze\). In order to excite the electron from the state \(n=3\) to \(n=4\), the energy required is \(66.0 ~\text{eV}\). The value of \(Z\) will be:
1. \(25\)
2. \(10\)
3. \(4\)
4. \(5\)

Subtopic:  Bohr's Model of Atom |
 66%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The Rutherford α-particle experiment shows that most of the α-particles pass through almost unscattered while some are scattered through large angles. What information does it give about the structure of the atom?

1. Atom is hollow.
2. The whole mass of the atom is concentrated in a small center called the nucleus.
3. Nucleus is positively charged.
4. All of the above
Subtopic:  Various Atomic Models |
 86%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A hydrogen atom is excited from the ground state to the state of principal quantum number \(4\). Then the number of spectral lines observed will be:
1. \(3\)
2. \(6\)
3. \(5\)
4. \(2\)

Subtopic:  Spectral Series |
 87%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

What is the ratio of the speed of an electron in the first orbit of an \(\mathrm{H}\text-\)atom to the speed of light?
1. \(\frac{1}{137}\)
2. \(137\)
3. \(\frac{1}{83}\)
4. \(\frac{1}{47}\)

Subtopic:  Bohr's Model of Atom |
 81%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

In the diagram shown below, two atomic transitions are shown. If \(\lambda_1= 3000~\mathring{A}\) and \(\lambda_2= 6000~\mathring{A},\) then the value of \(\lambda\) will be:

 
1. \(2000~\mathring{A}\)
2. \(4000~\mathring{A}\)
3. \(4500~\mathring{A}\)
4. \(9000~\mathring{A}\)

Subtopic:  Spectral Series |
 73%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Let \(f_1\) be the maximum frequency of the Lyman series, \(f_2\) be the frequency of the first line of the Lyman series, and \(f_3\) be the frequency of the series limit of the Balmer series, then which of the following is correct?
1. \(f_1-f_2=f_3\)
2. \(f_2-f_1=f_3\)
3. \(f_1+f_2=f_3\)
4. \(2f_1 = f_2 + f_3\)

Subtopic:  Spectral Series |
 63%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

If the wavelength of the first line in the Balmer Series of the hydrogen spectrum is \(\lambda\), then what is the wavelength of the second line in this series?
1. \(\frac{20}{27}\lambda\)
2. \(\frac{27}{20}\lambda\)
3. \(\frac{25}{27}\lambda\)
4. \(\frac{27}{25}\lambda\)

Subtopic:  Spectral Series |
 76%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

In an atom, if the transition from \(n = 4\) to \(n=3\) gives ultraviolet radiation, then to obtain infrared radiation, the transition should be:
1. \(5\rightarrow 4\) 2. \(3\rightarrow 2\)
3. \(2\rightarrow 1\) 4. \(3\rightarrow 1\)
Subtopic:  Spectral Series |
 78%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch