The equivalent capacitance of the combination shown in the figure is: 

1. \(\dfrac{C}{2}\) 2. \(\dfrac{3C}{2}\)
3. \(3C\) 4. \(2C\)

Subtopic:  Combination of Capacitors |
 54%
From NCERT
NEET - 2021
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Two charged spherical conductors of radii \(R_1\) and \(R_2\) are connected by a wire. The ratio of surface charge densities of spheres \(\left ( \frac{\sigma _{1}}{\sigma _{2}}\right )\) is:

1. \(\sqrt{\dfrac{R_1}{R_2}}\) 2. \(\dfrac{R^2_1}{R^2_2}\)
3. \(\dfrac{R_1}{R_2}\) 4. \(\dfrac{R_2}{R_1}\)
Subtopic:  Electric Potential |
 65%
From NCERT
NEET - 2021
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Twenty seven drops of same size are charged at \(220~\text{V}\) each. They combine to form a bigger drop. Calculate the potential of the bigger drop:
1. \(1520~\text{V}\)
2. \(1980~\text{V}\)
3. \(660~\text{V}\)
4. \(1320~\text{V}\)

Subtopic:  Electric Potential |
 67%
From NCERT
NEET - 2021
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A parallel plate capacitor with cross-sectional area \(A\) and separation \(d\) has air between the plates. An insulating slab of the same area but the thickness of \(\dfrac{d}{2}\) is inserted between the plates as shown in the figure having a dielectric constant, \(K=4\). The ratio of new capacitance to its original capacitance will be:

     

1. \(2:1\) 2. \(8:5\)
3. \(6:5\) 4. \(4:1\)
Subtopic:  Dielectrics in Capacitors |
 74%
From NCERT
NEET - 2020
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The variation of electrostatic potential with radial distance \(r\) from the centre of a positively charged metallic thin shell of radius \(R\) is given by the graph:
1.   2.
3. 4.
Subtopic:  Electric Potential |
 72%
From NCERT
NEET - 2020
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Two hollow conducting spheres of radii \(R_1\) and \(R_2\) \(\left ( R_1\gg R_2 \right )\) have equal charges. The potential would be:
1. dependent on the material property of the sphere.
2. more on bigger sphere.
3. more on smaller sphere.
4. equal on both the spheres.
Subtopic:  Electric Potential |
 71%
From NCERT
NEET - 2022
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The angle between the electric lines of force and the equipotential surface is: 
1. \(180^\circ\)
2. \(0^\circ\)
3. \(45^\circ\)
4. \(90^\circ\)
Subtopic:  Equipotential Surfaces |
 82%
From NCERT
NEET - 2022
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A capacitor of capacitance \(C=900~\text{pF}\) is charged fully by \(100~\text{V}\) battery \(B\) as shown in Figure \((a)\). Then it is disconnected from the battery and connected to another uncharged capacitor of capacitance \(C=900~\text{pF}\) as shown in Figure \((b)\). The electrostatic energy stored by the system \((b)\) is:
       
1. \(1.5\times 10^{-6}~\text{J}\) 2. \(4.5\times 10^{-6}~\text{J}\)
3. \(3.25\times 10^{-6}~\text{J}\) 4. \(2.25\times 10^{-6}~\text{J}\)
Subtopic:  Energy stored in Capacitor |
 56%
From NCERT
NEET - 2022
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A hollow metal sphere of radius \(R\) is given \(+Q\) charges to its outer surface. The electric potential at a distance \(\dfrac{R}{3}\) from the centre of the sphere will be:
1. \(\dfrac{1}{4\pi \varepsilon_0}\dfrac{Q}{9R}\)
2. \(\dfrac{3}{4\pi \varepsilon_0}\dfrac{Q}{R}\)
3. \(\dfrac{1}{4\pi \varepsilon_0}\dfrac{Q}{3R}\)
4. \(\dfrac{1}{4\pi \varepsilon_0}\dfrac{Q}{R}\)

Subtopic:  Electric Potential |
 62%
From NCERT
NEET - 2022
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

Three capacitors, each of capacitance \(0.3~\mu \text{F}\) are connected in parallel. This combination is connected with another capacitor of capacitance \(0.1~\mu \text{F}\) in series. Then the equivalent capacitance of the combination is:
1. \(0.9~\mu\text{F}\)
2. \(0.09~\mu\text{F}\)
3. \(0.1~\mu\text{F}\)
4. \(0.01~\mu\text{F}\)
Subtopic:  Combination of Capacitors |
 83%
From NCERT
NEET - 2022
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch