Identify the correct definition:
1. | If after every certain interval of time, a particle repeats its motion, then the motion is called periodic motion. |
2. | To and fro motion of a particle is called oscillatory motion. |
3. | Oscillatory motion described in terms of single sine and cosine functions is called simple harmonic motion. |
4. | All of the above |
1. | \(e^{\omega t}\) | 2. | \(\text{log}_e(\omega t)\) |
3. | \(\text{sin}\omega t+ \text{cos}\omega t\) | 4. | \(e^{-\omega t}\) |
The rotation of the earth about its axis is:
1. | periodic motion |
2. | simple harmonic motion |
3. | periodic and simple harmonic motion |
4. | non-periodic motion |
The circular motion of a particle with constant speed is:
1. | Periodic and simple harmonic | 2. | Simple harmonic but not periodic |
3. | Neither periodic nor simple harmonic | 4. | Periodic but not simple harmonic |
Which one of the following is not an example of simple harmonic motion?
1. | the motion of the Moon around the Earth as observed from Mars. |
2. | the ripples produced when a stone is dropped into a tank of water. |
3. | a weight moving up and down at the end of a spring. |
4. | the motion of a ball on the floor. |
List-I | List-II | ||
(a) | motion with constant speed | (i) | SHM |
(b) | motion with constant acceleration | (ii) | uniform circular motion |
(c) | oscillatory motion | (iii) | projectile motion |
(d) | random motion | (iv) | molecular motion in gas |
1. | a-(iv), b-(ii), c-(iii), d-(i) |
2. | a-(i), b-(iii), c-(ii), d-(iv) |
3. | a-(ii), b-(iii), c-(i), d-(iv) |
4. | a-(ii), b-(iii), c-(iv), d-(i) |
1. | \(A_1 \omega_1=A_2 \omega_2=A_3 \omega_3\) |
2. | \(A_1 \omega_1^2=A_2 \omega_2^2=A_3 \omega_3^2\) |
3. | \(A_1^2 \omega_1=A_2^2 \omega_2=A_3^2 \omega_3\) |
4. | \(A_1^2 \omega_1^2=A_2^2 \omega_2^2=A^2\) |
If a particle in SHM has a time period of \(0.1\) s and an amplitude of \(6\) cm, then its maximum velocity will be:
1. \(120 \pi\) cm/s
2. \(0.6 \pi\) cm/s
3. \(\pi\) cm/s
4. \(6\) cm/s