If the molar concentration of is mol L–1, the concentration of chloride ions will be:
1. | 3.0 x 10-3 | 2. | 6.0 x 10-3 |
3. | 0.3 x 10-3 | 4. | 0.6 x 10-6 |
Which of the following is an example of a reversible reaction?
1. | \(\small{KNO_3(aq) + NaCl(aq) \rightleftharpoons KCl(aq) + NaNO_3(aq)} \) |
2. | \(\small{2Na(s) + H_2O(l) \rightleftharpoons 2NaOH(aq) + H_2(g)} \) |
3. | \(\small{AgNO_3(aq) + NaCl(aq) \rightleftharpoons AgCl(s) + NaNO_3(aq)} \) |
4. | \(\small{Pb{(NO_3)}_2(aq) + 2NaI(aq) \rightleftharpoons PbI_2(s) + 2NaNO_3(aq)} \) |
1. | Equilibrium is possible only in a closed system at a constant temperature. |
2. | All measurable properties of the system remain constant. |
3. | All the physical processes stop at equilibrium. |
4. | The opposing processes occur at the same rate and there is a dynamic but stable condition. |
In the reaction, N2O4(g) 2NO2(g), is that part of N2O4 which dissociates. The number of moles at equilibrium will be:
1.
2.
3.
4.
In the reaction A(g) + 2B(g) ⇌ 2C(g) + D(g), the initial concentration of B is twice that of A and, at equilibrium, the concentrations of A and D are equal. The value of the equilibrium constant will be:
1. | 4 | 2. | 16 |
3. | 2 | 4. | 1 |
HI was heated in a sealed tube at 440C till the equilibrium was reached. At this point, HI was found to be 22 % decomposed. The equilibrium constant for this dissociation is :
1. | 0.28 | 2. | 0.08 |
3. | 0.02 | 4. | 1.99 |
Consider the following reaction taking place in 1L capacity container at 300 K.
\(\mathrm{A +B \rightleftharpoons C+D }\)
If one mole each of A and B are present initially and at equilibrium 0.7 mol of C is formed, then the equilibrium constant \((K_c) \) for the reaction is:
1. | 9.7 | 2. | 1.2 |
3. | 6.2 | 4. | 5.4 |
1. | 0.36 | 2. | 3.6 × 10–2 |
3. | 3.6 × 10–3 | 4. | 3.6 |
are the respective ionisation constants for the following reactions.
\(\mathrm{H}_2 \mathrm{~S} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HS}^{-}\)
\(\mathrm{HS}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{S}^{2-}\)
\(\mathrm{H}_2 \mathrm{~S} \rightleftharpoons 2 \mathrm{H}^{+}+\mathrm{S}^{2-}\)
The correct relationship between is:
1. \(\mathrm{K}_{\mathrm{a}_3}=\mathrm{K}_{\mathrm{a}_1} \times \mathrm{K}_{\mathrm{a}_2} \)
2. \(\mathrm{K}_{\mathrm{a}_3}=\mathrm{K}_{\mathrm{a}_1}+\mathrm{K}_{\mathrm{a}_2} \)
3. \(K_{a_3}=K_{a_1}-K_{a_2} \)
4. \(\mathrm{K}_{\mathrm{a}_3}=\mathrm{K}_{\mathrm{a}_1} / \mathrm{K}_{\mathrm{a}_2}\)
Reaction quotient for the reaction, is given by , .The reaction will proceed from right to left if Kc value is:
1. | Q<Kc | 2. | Q=0 |
3. | Q>Kc | 4. | Q=Kc |