1. | \( \frac{T}{12} \) | 2. | \(\frac{5 T}{12} \) |
3. | \( \frac{7 T}{12} \) | 4. | \(\frac{2 T}{3}\) |
1. | \(3~\text{cm}\) | 2. | \(3.5~\text{cm}\) |
3. | \(4~\text{cm}\) | 4. | \(5~\text{cm}\) |
1. | \(T_1<T_2\) | 2. | \(T_1>T_2\) |
3. | \(T_1=T_2\) |
4. | \(T_1= 2T_2\) |
A particle of mass \(m\) and charge \(\text-q\) moves diametrically through a uniformly charged sphere of radius \(R\) with total charge \(Q\). The angular frequency of the particle's simple harmonic motion, if its amplitude \(<R\), is given by:
1. \(\sqrt{\dfrac{qQ}{4 \pi \varepsilon_0 ~mR} }\)
2. \(\sqrt{\dfrac{qQ}{4 \pi \varepsilon_0 ~mR^2} }\)
3. \(\sqrt{\dfrac{qQ}{4 \pi \varepsilon_0 ~mR^3}}\)
4. \( \sqrt{\dfrac{m}{4 \pi \varepsilon_0 ~qQ} }\)
1. | \(2A,A\) | 2. | \(4A,0\) |
3. | \(A,A\) | 4. | \(0,2A\) |
1. | \(r\) | 2. | \(2r\) |
3. | \(3r\) | 4. | \(4r\) |
A particle is executing linear simple harmonic motion with an amplitude \(a\) and an angular frequency \(\omega.\) Its average speed for its motion from extreme to mean position will be:
1. \(\dfrac{a\omega}{4}\)
2. \(\dfrac{a\omega}{2\pi}\)
3. \(\dfrac{2a\omega}{\pi}\)
4. \(\dfrac{a\omega}{\sqrt{3}\pi}\)