List-I (\(x \text{-}y\) graphs) |
List-II (Situations) |
||
(a) | (i) | Total mechanical energy is conserved | |
(b) | (ii) | Bob of a pendulum is oscillating under negligible air friction | |
(c) | (iii) | Restoring force of a spring | |
(d) | (iv) | Bob of a pendulum is oscillating along with air friction |
(a) | (b) | (c) | (d) | |
1. | (iv) | (ii) | (iii) | (i) |
2. | (iv) | (iii) | (ii) | (i) |
3. | (i) | (iv) | (iii) | (ii) |
4. | (iii) | (ii) | (i) | (iv) |
A block of mass \(4~\text{kg}\) hangs from a spring of spring constant \(k = 400~\text{N/m}\). The block is pulled down through \(15~\text{cm}\) below the equilibrium position and released. What is its kinetic energy when the block is \(10~\text{cm}\) below the equilibrium position? [Ignore gravity]
1. \(5~\text{J}\)
2. \(2.5~\text{J}\)
3. \(1~\text{J}\)
4. \(1.9~\text{J}\)
A body is executing simple harmonic motion. At a displacement \(x,\) its potential energy is \(E_1\) and at a displacement \(y\), its potential energy is \(E_2\). The potential energy \(E\) at displacement \(x+y\) will be?
1. \(E = \sqrt{E_1}+\sqrt{E_2}\)
2. \(\sqrt{E} = \sqrt{E_1}+\sqrt{E_2}\)
3. \(E =E_1 +E_2\)
4. None of the above
1. | Zero | 2. | \(30~\text{J}\) |
3. | \(20~\text{J}\) | 4. | \(40~\text{J}\) |
1. \(\frac{\pi}{2}~\text{s}\)
2. \(\frac{1}{2}~\text{s}\)
3. \(\pi~\text{s}\)
4. \(1~\text{s}\)