The variation of EMF with time for four types of generators is shown in the figures. Which amongst them can be called AC voltage?
(a) | (b) |
(c) | (d) |
Choose the correct option from the given ones:
1. | (a) and (d) |
2. | (a), (b), (c), and (d) |
3. | (a) and (b) |
4. | only (a) |
1. | \(\frac{1}{100}~\text{sec}\) | 2. | \(\frac{1}{200}~\text{sec}\) |
3. | \(\frac{1}{300}~\text{sec}\) | 4. | \(\frac{1}{400}~\text{sec}\) |
1. | \(484~\text{W}\) | 2. | \(848~\text{W}\) |
3. | \(400~\text{W}\) | 4. | \(786~\text{W}\) |
The peak value of an alternating emf; \(E = E_{0}\sin\omega t\) is \(10~\text V\) and its frequency is \(50~\text{Hz}.\) At a time \(t=\frac{1}{600}~\text{s},\) the instantaneous value of the emf will be:
1. \(1~\text V\)
2. \(5\sqrt 3~\text V\)
3. \(5~\text V\)
4. \(10~\text V\)
The output current versus time curve of a rectifier is shown in the figure. The average value of the output current in this case will be:
1. \(0\)
2. \(\dfrac{I_0}{2}\)
3. \(\dfrac{2I_0 }{ \pi}\)
4. \(I_0\)
1. | \(\frac{\varepsilon^{2} R}{\left[R^{2}+\left(L \omega-\frac{1}{C \omega}\right)^{2}\right]}\) | 2. | \(\frac{\varepsilon^{2} \sqrt{R^{2}+\left(L \omega-\frac{1}{C \omega}\right)^{2}}}{R}\) |
3. | \(\frac{\varepsilon^{2}\left[R^{2}+\left(L \omega-\frac{1}{C \omega}\right)^{2}\right]}{R}\) | 4. | \(\frac{\varepsilon^{2}R}{\sqrt{R^{2}+\left(L \omega-\frac{1}{C \omega}\right)^{2}}}\) |
1. | \(0.67~\text{W}\) | 2. | \(0.78~\text{W}\) |
3. | \(0.89~\text{W}\) | 4. | \(0.46~\text{W}\) |
1. | \( 0.2~\text{sec}\) | 2. | \( 0.25~\text{sec}\) |
3. | \(25 \times10^{-3}~\text{sec}\) | 4. | \(2.5 \times10^{-3}~\text{sec}\) |
1. | \(60\) Hz and \(240\) V |
2. | \(19\) Hz and \(120\) V |
3. | \(19\) Hz and \(170\) V |
4. | \(754\) Hz and \(70\) V |