Identify the correct definition:
1. | If after every certain interval of time, a particle repeats its motion, then the motion is called periodic motion. |
2. | To and fro motion of a particle is called oscillatory motion. |
3. | Oscillatory motion described in terms of single sine and cosine functions is called simple harmonic motion. |
4. | All of the above |
1. | \(e^{\omega t}\) | 2. | \(\text{log}_e(\omega t)\) |
3. | \(\text{sin}\omega t+ \text{cos}\omega t\) | 4. | \(e^{-\omega t}\) |
The rotation of the earth about its axis is:
1. | periodic motion |
2. | simple harmonic motion |
3. | periodic and simple harmonic motion |
4. | non-periodic motion |
The circular motion of a particle with constant speed is:
1. | Periodic and simple harmonic | 2. | Simple harmonic but not periodic |
3. | Neither periodic nor simple harmonic | 4. | Periodic but not simple harmonic |
If a particle in SHM has a time period of \(0.1\) s and an amplitude of \(6\) cm, then its maximum velocity will be:
1. \(120 \pi\) cm/s
2. \(0.6 \pi\) cm/s
3. \(\pi\) cm/s
4. \(6\) cm/s
1. | \(A_1 \omega_1=A_2 \omega_2=A_3 \omega_3\) |
2. | \(A_1 \omega_1^2=A_2 \omega_2^2=A_3 \omega_3^2\) |
3. | \(A_1^2 \omega_1=A_2^2 \omega_2=A_3^2 \omega_3\) |
4. | \(A_1^2 \omega_1^2=A_2^2 \omega_2^2=A^2\) |
1. | The value of \(a\) is zero whatever may be the value of \(v\). |
2. | When \(v\) is zero, \(a\) is zero. |
3. | When \(v\) is maximum, \(a\) is zero. |
4. | When \(v\) is maximum, \(a\) is maximum. |
1. | Spring constant | 2. | Angular frequency |
3. | (Angular frequency)2 | 4. | Restoring force |
1. | \(2 \pi \over K\) | 2. | \(2 \pi K\) |
3. | \(2 \pi \over \sqrt{K}\) | 4. | \(2 \pi \sqrt{K}\) |