The condition of minimum deviation is achieved in an equilateral prism kept on the prism table of a spectrometer. If the angle of incidence is \(50^{\circ}\), the angle of deviation is:
1. \(25^{\circ}\)

2. \(40^{\circ}\)

3. \(50^{\circ}\)

4. \(60^{\circ}\)

Subtopic:  Prisms |
 83%
Level 1: 80%+
Hints
Links

An object is placed \(20~\text{cm}\) in front of a concave mirror of a radius of curvature \(10~\text{cm}.\) The position of the image from the pole of the mirror is:
1. \(7.67~\text{cm}\)
2. \(6.67~\text{cm}\)
3. \(8.67~\text{cm}\)
4. \(9.67~\text{cm}\)

Subtopic:  Reflection at Spherical Surface |
 91%
Level 1: 80%+
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

The angle of minimum deviation for a glass prism of refractive index \(\mu = \sqrt{3}\) equals the refracting angle of the prism. The angle of the prism is:
1. \(30^{\circ}\)
2. \(60^{\circ}\)
3. \(90^{\circ}\)
4. \(45^{\circ}\)

Subtopic:  Prisms |
 79%
Level 2: 60%+
Hints
Links

advertisementadvertisement

The angle of a prism is \(A\) and one of its refracting surfaces is silvered. Light rays falling at an angle of incidence \(2A\) on the first surface return through the same path after suffering reflection at the second (silvered) surface. The refractive index of the material is:
1. \(2\sin{A}\)
2. \(2\cos{A}\)
3. \(\frac{1}{2}\cos{A}\)
4. \(\tan{A}\)

Subtopic:  Prisms |
 77%
Level 2: 60%+
Hints
Links

The correct statement is:

1. The intermediate image in a compound microscope is real, erect and magnified
2. Intermediate image in a compound microscope is real, inverted, but diminished
3. Intermediate image in a compound microscope is virtual, erect and magnified
4. Intermediate image in a compound microscope is real, inverted and magnified
Subtopic:  Simple & Compound Microscope |
 74%
Level 2: 60%+
Hints
Links

A ray of light is incident on an equilateral glass prism placed on a horizontal table as shown. For minimum deviation, a true statement is:

        

1. \(PQ\) is horizontal
2. \(QR\) is horizontal
3. \(RS\) is horizontal
4. Either \(PQ\) or \(RS\) is horizontal 
Subtopic:  Prisms |
 79%
Level 2: 60%+
Hints
Links

advertisementadvertisement

When a ray of light falls on a given plate at an angle of incidence \(60^{\circ}\), the reflected and refracted rays are found to be normal to each other. The refractive index of the material of the plate is:
1. \(\frac{\sqrt{3}}{2} \) 2. \(1.5 \)
3. \(1.732 \) 4. \( 2\)
Subtopic:  Refraction at Plane Surface |
 78%
Level 2: 60%+
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

A thin rod of length \(\dfrac{f}{3}\) lies along the axis of a concave mirror of focal length \(f.\) One end of its magnified, real image touches an end of the rod. The length of the image is:

1. \(f\) 2. \(\dfrac{f}{2}\)
3. \(2f\) 4. \(\dfrac{f}{4}\)
Subtopic:  Reflection at Spherical Surface |
 58%
Level 3: 35%-60%
Hints
Links

A thin equiconvex lens of power \(P\) is cut into three parts \(A,B,\) and \(C\) as shown in the figure. If \(P_1,P_2\) and \(P_3\) are powers of the three parts respectively, then:
            

1. \(P_1=P_2=P_3\) 2. \(P_1>P_2=P_3\)
3. \(P_1<P_2=P_3\) 4. \(P_2=P_3=2P_1\)
Subtopic:  Lenses |
 72%
Level 2: 60%+
Hints
Links

advertisementadvertisement

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

A point source of light \(B\) is placed at a distance \(L\) in front of the centre of a mirror of width \(d\) hung vertically on a wall. A man \((A)\) walks in front of the mirror along a line parallel to the mirror at a distance \(2L\) from it as shown. The greatest distance over which he can see the image of the light source in the mirror is:
                         
1. \(\frac{d}{2}\)
2. \(d\)
3. \(2d\)
4. \(3d\)

Subtopic:  Reflection at Plane Surface |
 59%
Level 3: 35%-60%
Hints
Links