If an electron in a hydrogen atom jumps from the \(3\)rd orbit to the \(2\)nd orbit, it emits a photon of wavelength \(\lambda\). What will be the corresponding wavelength of the photon when it jumps from the \(4^{th}\) orbit to the \(3\)rd orbit?

1. \(\dfrac{16}{25} \lambda\) 2. \(\dfrac{9}{16} \lambda\)
3. \(\dfrac{20}{7} \lambda\) 4. \(\dfrac{20}{13} \lambda\)

Subtopic:  Bohr's Model of Atom |
 81%
Level 1: 80%+
NEET - 2016
Hints
Links

Considering the \(3^{rd}\) orbit of \(\mathrm{He}^{+}\) (Helium ion), using the non-relativistic approach, the speed of the electron in this orbit will be: (Given: \(Z=2, K = 9\times 10^{9}\), and Planck's constant, \(h= 6.6\times10^{-34}~\text{J-s}\) )
1. \(2.92\times 10^{8}\) m/s
2. \(1.46\times 10^{6}\) m/s
3. \(0.73\times 10^{8}\) m/s
4. \(3.0\times 10^{8}\) m/s

Subtopic:  Bohr's Model of Atom |
 78%
Level 2: 60%+
NEET - 2015
Hints
Links

In a Rutherford scattering experiment when a projectile of charge \(Z_1\) and mass \(M_1\) approaches a target nucleus of charge \(Z_2\)
 and mass \(M_2\) the distance of the closest approach is \(r_0.\) What is the energy of the projectile?

1. Directly proportional to \(M_1 \times M_2\)
2. Directly proportional to \(Z_1Z_2\)
3. Inversely proportional to \(Z_1\)
4. Directly proportional to the mass \(M_1\)

Subtopic:  Various Atomic Models |
 84%
Level 1: 80%+
NEET - 2009
Hints
Links

advertisementadvertisement

In the \(n^{th}\) orbit, the energy of an electron is \(E_{n}=-\frac{13.6}{n^2} ~\text{eV}\) for the hydrogen atom. What will be the energy required to take the electron from the first orbit to the second orbit?
1. \(10.2~\text{eV}\)
2. \(12.1~\text{eV}\)
3. \(13.6~\text{eV}\)
4. \(3.4~\text{eV}\)

Subtopic:  Bohr's Model of Atom |
 81%
Level 1: 80%+
Hints
Links

A beam of fast-moving alpha particles was directed towards a thin film of gold. The parts \(A', B',\) and \(C'\) of the transmitted and reflected beams corresponding to the incident parts \(A,B\) and \(C\) of the beam, are shown in the adjoining diagram. The number of alpha particles in:

          

1. \(B'\) will be minimum and in \(C'\) maximum
2. \(A'\) will be the maximum and in \(B'\) minimum
3. \(A'\) will be minimum and in \(B'\) maximum
4. \(C'\) will be minimum and in \(B'\) maximum
Subtopic:  Various Atomic Models |
 68%
Level 2: 60%+
Hints
Links

When a hydrogen atom is raised from the ground state to an excited state:
1. its potential energy increases and kinetic energy decreases.
2. its potential energy decreases and kinetic energy increases.
3. both kinetic energy and potential energy increase.
4. both kinetic energy and potential energy decrease.
Subtopic:  Bohr's Model of Atom |
 71%
Level 2: 60%+
Hints
Links

advertisementadvertisement

In Bohr's model if the atomic radius of the first orbit is \(r_0\), then what will be the radius of the third orbit?
1. \(\dfrac{r_0}{9}\) 2. \(r_0\)
3. \(9r_0\) 4. \(3r_0\)
Subtopic:  Bohr's Model of Atom |
 87%
Level 1: 80%+
Hints
Links

Given that the value of the Rydberg constant is \(10^{7}~\text{m}^{-1},\) what will be the wave number of the last line of the Balmer series in the hydrogen spectrum?
1. \(0.5 \times 10^{7}~\text{m}^{-1}\)
2. \(0.25 \times 10^{7} ~\text{m}^{-1}\)
3. \(2.5 \times 10^{7}~\text{m}^{-1}\)
4. \(0.025 \times 10^{4} ~\text{m}^{-1}\)

Subtopic:  Spectral Series |
 87%
Level 1: 80%+
NEET - 2016
Hints
Links

The ratio of the longest wavelengths corresponding to the Lyman and Balmer series in the hydrogen spectrum is:
1. \(\dfrac{3}{23}\) 2. \(\dfrac{7}{29}\)
3. \(\dfrac{9}{31}\) 4. \(\dfrac{5}{27}\)
Subtopic:  Spectral Series |
 89%
Level 1: 80%+
AIPMT - 2013
Hints
Links

advertisementadvertisement

If an alpha nucleus of energy \(\frac{1}{2}mv^2\) bombards a heavy nuclear target of charge \(Ze\) then the distance of the closest approach for the alpha nucleus will be proportional to:
1. \(\frac{1}{Ze} \) 2. \(v^2 \)
3. \(\frac{1}{m} \) 4. \(\frac{1}{v^4}\)
Subtopic:  Various Atomic Models |
 83%
Level 1: 80%+
AIPMT - 2010
Hints
Links