Assertion (A): | The potential \((V)\) at any axial point, at \(2~\text m\) distance (\(r\)) from the centre of the dipole of dipole moment vector \(\vec P\) of magnitude, \(4\times10^{-6}~\text{C m},\) is \(\pm9\times10^3~\text{V}.\) (Take \({\dfrac{1}{4\pi\varepsilon_0}}=9\times10^9\) SI units) |
Reason (R): | \(V=\pm{\dfrac{2P}{4\pi\varepsilon_0r^2}},\) where \(r\) is the distance of any axial point situated at \(2~\text m\) from the centre of the dipole. |
1. | Both (A) and (R) are True and (R) is not the correct explanation of (A). |
2. | (A) is True but (R) is False. |
3. | (A) is False but (R) is True. |
4. | Both (A) and (R) are True and (R) is the correct explanation of (A). |
\((\mathrm A)\) | The charge stored in it, increases. |
\((\mathrm B)\) | The energy stored in it, decreases. |
\((\mathrm C)\) | Its capacitance increases. |
\((\mathrm D)\) | The ratio of charge to its potential remains the same. |
\((\mathrm E)\) | The product of charge and voltage increases. |
1. | \(\mathrm {(A),(C)}\) and \((\mathrm E)\) only |
2. | \(\mathrm {(B),(D) }\) and \((\mathrm E)\) only |
3. | \(\mathrm{(A),(B)}\) and \((\mathrm C)\) only |
4. | \(\mathrm{(A),(B)}\) and \((\mathrm E)\) only |
1. | both \(q\) and \(V\) |
2. | the geometry of the capacitor |
3. | \(q\) only |
4. | \(V\) only |
1. | \(4\times10^2~\text V\) | 2. | \(44.4~\text V\) |
3. | \(4.4\times10^5~\text V\) | 4. | \(4\times10^4~\text V\) |
1. | \(9~{\mu \text{F}}\) | 2. | \(2~{\mu \text{F}}\) |
3. | \(3~{\mu \text{F}}\) | 4. | \(6~{\mu \text{F}}\) |
1. | \(\left(\dfrac{8}{3}\right)qk\) | 2. | \(\left(\dfrac{3}{8}\right)qk\) |
3. | \(\left(\dfrac{5}{8}\right)qk\) | 4. | \(\left(\dfrac{8}{5}\right)qk\) |