A particle is moving with veocity ; where k is constant. The general equation for the path is:
1.
2.
3.
4. xy=constant
1. \(3.14~\text{m/s}\)
2. \(2.0~\text{m/s}\)
3. \(1.0~\text{m/s}\)
4. zero
The coordinates of a moving particle at any time \(t\) are given by \(x= \alpha t^3\) and \(y = \beta t^3.\) The speed of the particle at a time \(t\) is given by:
1. | \(\sqrt{\alpha^{2} + \beta^{2}}\) | 2. | \(3t \sqrt{\alpha^{2} + \beta^{2}}\) |
3. | \(3t^{2} \sqrt{\alpha^{2} +\beta^{2}}\) | 4. | \(t^{2} \sqrt{\alpha^{2} +\beta^{2}}\) |
A particle is moving such that its position coordinates (x, y) are (2m, 3m) at time t = 0, (6m, 7m) at time t = 2s and (13m, 14m) at time t = 5s. Average velocity vector (vav) from t = 0 to t = 5s is
1. (13+14)
2. (+)
3. 2(+)
4. (+)
The coordinates of a moving particle at a time t, are given by, x = 5sin10t, y = 5cos10t. The speed of the particle is:
(1) 25
(2) 50
(3) 10
(4)
A car turns at a constant speed on a circular track of radius \(100~\text m,\) taking \(62.8~\text s\) for every circular lap. The average velocity and average speed for each circular lap, respectively, is:
1. | \(0,~0\) | 2. | \(0,\) \(10~\text{m/s},\) |
3. | \(10~\text{m/s},\) \(10~\text{m/s},\) | 4. | \(10~\text{m/s},\) \(0\) |
If three coordinates of a particle change according to the equations \(x = 3 t^{2}, y = 2 t , z= 4\), then the magnitude of the velocity of the particle at time \(t=1\) second will be:
1. \(2\sqrt{11}~\text{unit}\)
2. \(\sqrt{34}~\text{unit}\)
3. \(40~\text{unit}\)
4. \(2\sqrt{10}~\text{unit}\)
Two particles move from \(A\) to \(C\) and \(A\) to \(D\) on a circle of radius \(R\) and the diameter \(AB.\) If the time taken by both particles is the same, then the ratio of magnitudes of their average velocities is:
1. \(2\)
2. \(2\sqrt{3}\)
3. \(\sqrt{3}\)
4. \(\dfrac{\sqrt{3}}{2}\)
A particle moves on the curve \(x^2 = 2y\). The angle of its velocity vector with the \(x\)-axis at the point \(\left(1, \frac{1}{2}\right )\) will be:
1. | \(30^\circ\) | 2. | \(60^\circ\) |
3. | \(45^\circ\) | 4. | \(75^\circ\) |
A particle starts moving from the origin in the XY plane and its velocity after time \(t\) is given by \(\overrightarrow{{v}}=4 \hat{{i}}+2 {t} \hat{{j}}\). The trajectory of the particle is correctly shown in the figure:
1. | 2. | ||
3. | 4. |