A given mass of gas expands from state \(A\) to state \(B\) by three paths \(1, 2~\text{and}~3\), as shown in the figure. If \(W_1, W_2~\text{and}~W_3\) respectively be the work done by the gas along the three paths, then:
1. | \(W_1 >W_2>W_3\) | 2. | \(W_1<W_2<W_3\) |
3. | \(W_1 =W_2=W_3\) | 4. | \(W_1 <W_2=W_3\) |
A gas is compressed isothermally to half its initial volume. The same gas is compressed separately through an adiabatic process until its volume is again reduced to half. Then:
1. | compressing the gas through an adiabatic process will require more work to be done. |
2. | compressing the gas isothermally or adiabatically will require the same amount of work to be done. |
3. | which of the case (whether compression through isothermal or through the adiabatic process) requires more work to be done will depend upon the atomicity of the gas. |
4. | compressing the gas isothermally will require more work to be done. |