If 32 gm of \(O_2\) at \(27^{\circ}\mathrm{C}\) is mixed with 64 gm of \(O_2\) at \(327^{\circ}\mathrm{C}\) in an adiabatic vessel, then the final temperature of the mixture will be:
1. \(200^{\circ}\mathrm{C}\)
2. \(227^{\circ}\mathrm{C}\)
3. \(314.5^{\circ}\mathrm{C}\)
4. \(235.5^{\circ}\mathrm{C}\)
One mole of an ideal diatomic gas undergoes a transition from A to B along a path AB as shown in the figure.
The change in internal energy of the gas during the transition is
1. 20 kJ
2. -20 kJ
3. 20 J
4. -12 kJ
During an adiabatic process, the pressure of a gas is found to be proportional to the cube of its temperature. The ratio of CP/CV for the gas is equal to:
1. | 4/3 | 2. | 2 |
3. | 5/3 | 4. | 3/2 |
If the ratio of specific heat of a gas at constant pressure to that at constant volume is γ, the change in internal energy of a mass of gas, when the volume changes from V to 2V constant pressure p, is
(1)
(2) pV
(3)
(4)
The specific heat of a gas in an isothermal process is:
1. | Infinite | 2. | Zero |
3. | Negative | 4. | Remains constant |