The figure shows some of the equipotential surfaces. Magnitude and direction of the electric field is given by
1. 200 V/m, making an angle with the x-axis
2. 100 V/m, pointing towards the negative x-axis
3. 200 V/m, making an angle with the x-axis
4. 100 V/m, making an angle with the x-axis
The electric potential V at any point O (x, y, z all in metres) in space is given by . The electric field at the point in volt/metre is -
1. 8 along negative x-axis
2. 8 along positive x-axis
3. 16 along negative x-axis
4. 16 along positive z-axis
Electric potential at any point is , then the magnitude of the electric field is
1.
2.
3.
4. 7
If potential (in volts) in a region is expressed as V(x,y,z)=6xy-y+2yz, the electric field (in N/C) at point (1,1,0) is
(1)-(3+5+3)
(2)-(6+5+2)
(3)-(2+3+)
(4)-(6+9+)
In a region, the potential is represented by V(x,y,z)=6x-8xy-8y+6yz, where V is in volts and x,y,z are in meters. The electric force experienced by a charge of 2 coulomb situated at point (1,1,1) is
(1)6√5N
(2)30N
(3)24N
(4)4√35N