1. | 2. | ||
3. | 4. |
1. | \(\frac{1}{2}\) | 2. | \(1\) |
3. | \(4\) | 4. | \(\frac{1}{4}\) |
A cylindrical conductor of radius \(R\) is carrying a constant current. The plot of the magnitude of the magnetic field \(B\) with the distance \(d\) from the centre of the conductor is correctly represented by the figure:
1. | 2. | ||
3. | 4. |
Two toroids \(1\) and \(2\) have total no. of turns \(200\) and \(100\) respectively with average radii \(40~\text{cm}\) and \(20~\text{cm}\) respectively. If they carry the same current \(i,\) what will be the ratio of the magnetic fields along the two loops?
1. \(1:1\)
2. \(4:1\)
3. \(2:1\)
4. \(1:2\)