1. | \(B\) acts along the \(x\text-\)axis |
2. | \(B\) acts along the \(y\text-\)axis |
3. | \(B\) acts along the \(z\text-\)axis |
4. | \(B\) can act along any of the above direction for the net force to be zero |
A rectangular loop carrying a current i is situated near a long straight wire such that the wire is parallel to the one of the sides of the loop and is in the plane of the loop. If a steady current I is established in wire as shown in figure, the loop will
1. Rotate about an axis parallel to the wire
2. Move away from the wire or towards right
3. Move towards the wire
4. Remain stationary
A current \(I\) is carried by an elastic circular wire of length \(L\). It is placed in a uniform magnetic field \(B\) (out of paper) with its plane perpendicular to \(B'\text{s}\) direction. What will happen to the wire?
1. | No force | 2. | A stretching force |
3. | A compressive force | 4. | A torque |
A conducting loop carrying a current I is placed in a uniform magnetic field pointing into the plane of the paper as shown. The loop will have a tendency to
1. Contract
2. Expand
3. Move towards +ve x -axis
4. Move towards -ve x -axis
Current i is carried in a wire of length L. If the wire is turned into a circular coil, the maximum magnitude of torque in a given magnetic field B will be:
1. 2.
3. 4.