A bar magnet of length l and magnetic dipole moment M is bent to form an arc which subtends an angle of at centre. The new magnetic dipole moment will be
1.
2.
3.
4.
The unit of pole strength is:
1. \(\text{Am}^2\)
2. \(\text{Am}\)
3. \(\frac{\text{A}^2}{\text{m}}\)
4. \(\frac{\text{A}^2}{\text{m}^2}\)
The magnetic field at a point \(x\) on the axis of a small bar magnet is equal to the field at a point \(y\) on the equator of the same magnet. The ratio of the distances of \(x\) and \(y\) from the centre of the magnet is:
1. \(2^{-3}\)
2. \(2^{\frac{-1}{3}}\)
3. \(2^{3}\)
4. \(2^{\frac{1}{3}}\)
Two short magnets with their axes horizontally perpendicular to the magnetic meridian are placed with their centres 40 cm east and 50 cm west of the magnetic needle. If the needle remains undeflected, the ratio of their magnetic moments is
1. 4:5
2. 16:25
3. 64:125
4. 2:
If a bar magnet of magnetic moment M is freely suspended in a uniform magnetic field of strength B, the work done in rotating the magnet through an angle is
1.
2.
3.
4.