Two circuits have coefficient of mutual induction of 0.09 henry. Average e.m.f. induced in the secondary by a change of current from 0 to 20 ampere in 0.006 second in the primary will be
1. 120 V
2. 80 V
3. 200 V
4. 300 V
Two conducting circular loops of radii \(R_1\) and \(R_2\) are placed in the same plane with their centres coinciding. If \(R_1>>R_2\), the mutual inductance \(M\) between them will be directly proportional to:
1. | \(\dfrac{R_1}{R_2}\) | 2. | \(\dfrac{R_2}{R_1}\) |
3. | \(\dfrac{R^2_1}{R_2}\) | 4. | \(\dfrac{R^2_2}{R_1}\) |
A small square loop of wire of side l is placed inside a large square loop of wire of side L (L > l). The loop are coplanar and their centre coincide. The mutual inductance of the system is proportional to
1. l / L
2. l2 / L
3. L/l
4. L2/l
Two circular coils can be arranged in any of the three situations shown in the figure. Their mutual inductance will be
1. Maximum in situation (A)
2. Maximum in situation (B)
3. Maximum in situation (C)
4. The same in all situations
The mutual inductance of a pair of coils is 2H. If the current of the coil changes from 10A to zero in 0.1s, the emf induced in the other coil is –
1. 2 V
2. 20 V
3. 0.2 V
4. 200 V