What is sound level for intensity of 10–6 W/m2?
1. 50 dB
2. 60 dB
3. 70 dB
4. 80 dB
1. | directly on the square of the wave amplitude and square of the wave frequency. |
2. | directly on the square of the wave amplitude and square root of the wave frequency. |
3. | directly on the wave frequency and square of the wave amplitude. |
4. | directly on the wave amplitude and square of the wave frequency. |
1. | \(500\) m/s | 2. | \(156\) m/s |
3. | \(344\) m/s | 4. | \(172\) m/s |
A : The propagation of sound in air should be an isothermal process.
R : As air is bad conductor of heat, its temperature does not change by compression or expansion.
Statement–1 : In the case of a stationary wave,
a person hear a loud sound at the pressure nodes
as compared to the antinodes.
and
Statement–2 : In a stationary wave all the
particles of the medium vibrate in phase.
1. Statement-1 is True, Statement-2 is True,
Statement-2 is a correct explanation for
statement-1
2. Statement-1 is True, Statement-2 is True,
Statement-2 is NOT a correct explanation
for Statement-1
3. Statement-1 is True, Statement-2 is False
4. Statement-1 is False, Statement-2 is True
A source of sound placed at the open end of a resonance column sends an acoustic wave of pressure amplitude inside the tube. If the atmospheric pressure is , then the ratio of maximum and minimum pressure at the closed end of the tube will be :
1.
2.
3.
4.
Which one of the following statements is true?
1. | Both light and sound waves in the air are transverse. |
2. | The sound waves in the air are longitudinal while the light waves are transverse. |
3. | Both light and sound waves in the air are longitudinal. |
4. | Both light and sound waves can travel in a vacuum. |
The time of reverberation of a room \(A\) is one second. What will be the time (in seconds) of reverberation of a room, having all the dimensions double those of room A?
1. 2
2. 4
3.
4. 1
A transverse wave propagating along the \(x\text-\)axis is represented by:
\(y(x,t)=8.0\sin\left(0.5\pi x-4\pi t-\frac{\pi}{4}\right)\), where \(x\) is in meters and \(t\) in seconds. The speed of the wave is:
1. \(4\pi\) m/s
2. \(0.5\) m/s
3. \(\frac{\pi}{4}\) m/s
4. \(8\) m/s
Two sound waves with wavelengths \(5.0~\text{m}\) and \(5.5~\text{m}\), respectively, propagate in gas with a velocity of \(330~\text{m/s}\). How many beats per second can we expect?
1. \(12\)
2. \(0\)
3. \(1\)
4. \(6\)