A wheel is at rest. Its angular velocity increases uniformly and becomes 80 rad/s after 5 s. The total angular displacement is
1. 800 rad
2. 400 rad
3. 200 rad
4. 100 rad
Moment of inertia of an object does not depend upon
1. mass of object
2. mass distribution
3. angular velocity
4. axis of rotation
A force is acting on a point . The torque acting about a point is
1. 0
2.
2.
4.
A thin uniform circular disc of mass \(M\) and radius \(R\) is rotating in a horizontal plane about an axis passing through its center and perpendicular to its plane with an angular velocity . Another disc of the same dimensions but of mass \(\frac{1}{4}M\) is placed gently on the first disc co-axially. The angular velocity of the system will be:
1. | 2. | ||
3. | 4. |
When a torque acting upon a system is zero, then which of the following will be constant
1. force
2. Linear momentum
3. Angular momentum
4. Linear impulse
A wheel whose moment of inertia is 12 has an initial angular velocity of 40 rad/sec. A constant torque of 20 Nm acts on the wheel. The time in which the wheel is accelerated to 100 rad/sec is
1. 72 seconds
2. 16 seconds
3. 8 seconds
4. 36 seconds
A flywheel is in the form of a uniform circular disc of radius 1 m and mass 2 kg. The work which must be done on it to increase its frequency of rotation from 5 rev to 10 rev is approximately
1. 1.5 x J
2. 3.0 x J
3. 1.5 x J
4. 3.0 x J
A constant torque acting on a uniform circular wheel changes its angular momentum from to in 4s. The magnitude of this torque is
1.
2.
3.
4.
A body rolls down an inclined plane without slipping. The fraction of total energy associated with its rotation will be
Where k is radius of gyration of the body about an axis passing through centre of mass and R is the radius of the body.