A conducting rod \(AC\) of length \(4l\) is rotated about point \(O\) in a uniform magnetic field \(\vec {B}\) directed into the paper. If \(AO = l\) and \(OC = 3l\), then:
1. \(V_{A} - V_{O} = \dfrac{B \omega l^{2}}{2}\)
2. \(V_{O} - V_{C} = \dfrac{7}{2} B \omega l^{2}\)
3. \(V_{A} - V_{C} = 4 B \omega l^{2}\)
4. \(V_{C} - V_{O} = \dfrac{9}{2} B \omega l^{2}\)
The network shown in the figure is a part of a complete circuit. If at a certain instant the current i is 5 A and is decreasing at the rate of 103 A/s then VB – VA is
(1) 5 V
(2) 10 V
(3) 15 V
(4) 20 V
The variation of induced emf (E) with time (t) in a coil if a short bar magnet is moved along its axis with a constant velocity is best represented as
(1)
(2)
(3)
(4)
A loop abcd is moved across the pole pieces of a magnet as shown in fig. with a constant speed v. When the edge ab of the loop enters the pole pieces at time t = 0 sec. , which one of the following graphs represents correctly the induced emf in the coil?
(1)
(2)
(3)
(4)
Some magnetic flux is changed from a coil of resistance 10 ohm. As a result an induced current is developed in it, which varies with time as shown in figure. The magnitude of change in flux through the coil in webers is
(1) 2
(2) 4
(3) 6
(4) None of these
The graph gives the magnitude \(B(t)\) of a uniform magnetic field that exists throughout a conducting loop, perpendicular to the plane of the loop. Rank the five regions of the graph according to the magnitude of the emf induced in the loop, greatest first:
1. | \(b > (d = e) < (a = c)\) |
2. | \(b > (d = e) > (a = c)\) |
3. | \(b < d < e < c < a\) |
4. | \(b > (a = c) > (d = e)\) |
Figure (i) shows a conducting loop being pulled out of a magnetic field with a speed v. Which of the four plots shown in figure (ii) may represent the power delivered by the pulling agent as a function of the speed v
(1) a
(2) b
(3) c
(4) d
A flexible wire bent in the form of a circle is placed in a uniform magnetic field perpendicular to the plane of the coil. The radius of the coil changes as shown in the figure. The graph of induced emf in the coil is represented by
(1)
(2)
(3)
(4)
The current i in an induction coil varies with time t according to the graph shown in figure. Which of the following graphs shows the induced emf (e) in the coil with time
(1)
(2)
(3)
(4)
A square loop of side \(5\) cm enters a magnetic field with \(1\) cms-1. If the front edge enters the magnetic field at \(t=0\), then which graph best depicts emf?
1. | 2. | ||
3. | 4. |