What is the net force on the square coil ?
(1) moving towards wire
(2) moving away from wire
(3) moving towards wire
(4) moving away from wire
1. | \(10^{-5} ~\text{N} \), attractive |
2. | \(10^{-5}~\text{N} \), repulsive |
3. | \(2 \times 10^{-5}~\text{N} \), attractive |
4. | \(2 \times 10^{-5} ~\text{N} \), repulsive |
Two galvanometers A and B require 3mA and 5mA respectively to produce the same deflection of 10 divisions. Then
(1) A is more sensitive than B
(2) B is more sensitive than A
(3) A and B are equally sensitive
(4) Sensitiveness of B is 5/3 times that of A
There long straight wires A, B and C are carrying current as shown figure. Then the resultant force on B is directed
(1) Towards A
(2) Towards C
(3) Perpendicular to the plane of paper and outward
(4) Perpendicular to the plane of paper and inward
Two long conductors, separated by a distance d carry current and in the same direction. They exert a force F on each other. Now the current in one of them is increased to two times and its direction is reversed. The distance is also increased to . The new value of the force between them is-
1.
2.
3.
4.
Current i is carried in a wire of length L. If the wire is turned into a circular coil, the maximum magnitude of torque in a given magnetic field B will be:
1. 2.
3. 4.
An arrangement of three parallel straight wires placed perpendicular to the plane of paper carrying the same current I along the same direction as shown in the figure. Magnitude of force per unit length on the middle wire B is given by:
1.
2.
3.
4.
A long wire carrying a steady current is bent into a circular loop of one turn. The magnetic field at the center of loop is B. It is then bent into a circular coil of n turns. The magnetic field at the centre of this coil of n turns will be
(1) nB
(2)
(3) 2nB
(4)
A wire carrying current l has the shape as shown in the adjoining figure. Linear parts of the wire are very long and parallel to X-axis while the semicircular portion of radius R is lying in the Y-Z plane. Magnetic field at point O is :
1.
2.
3.
4.