In a simple pendulum, the period of oscillation T is related to length of the pendulum l as

(1) lT=constant

(2) l2T=constant

(3) lT2=constant

(4) l2T2=constant

Subtopic:  Angular SHM |
 83%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The equation of motion of a particle is \({d^2y \over dt^2}+Ky=0 \) where \(K\) is a positive constant. The time period of the motion is given by: 
1. \(2 \pi \over K\) 2. \(2 \pi K\)
3. \(2 \pi \over \sqrt{K}\) 4. \(2 \pi \sqrt{K}\)
Subtopic:  Simple Harmonic Motion |
 76%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The kinetic energy of a particle executing SHM is \(16~\text{J}\) when it is in its mean position. If the amplitude of oscillations is \(25~\text{cm}\) and the mass of the particle is \(5.12~\text{kg}\), the time period of its oscillation will be:
1. \(\frac{\pi}{5}~\text{s}\)
2. \(2\pi ~\text{s}\)
3. \(20\pi ~\text{s}\)
4. \(5\pi ~\text{s}\)
Subtopic:  Energy of SHM |
 71%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A pendulum has time period T. If it is taken on to another planet having acceleration due to gravity half and mass 9 times that of the earth then its time period on the other planet will be

(1) T

(2) T

(3) T1/3

(4) 2T

Subtopic:  Angular SHM |
 85%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A particle in SHM is described by the displacement equation xt=Acos ωt+θ. If the initial position of the particle is 1 cm and its initial velocity is πcm/s, what is its amplitude? (The angular frequency of the particle is π s-1)

(1)  1 cm       

(2)  2 cm

(3)  2 cm     

(4)  2.5 cm

Subtopic:  Simple Harmonic Motion |
 62%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A simple pendulum hanging from the ceiling of a stationary lift has a time period T1. When the lift moves downward with constant velocity, the time period is T2, then

(1) T2 is infinity

(2) T2>T1

(3) T2<T1

(4) T2=T1

Subtopic:  Angular SHM |
 60%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

If the length of a pendulum is made 9 times and mass of the bob is made 4 times , then the value of time period becomes

(1) 3T

(2) 3/2T

(3) 4T

(4) 2T

Subtopic:  Angular SHM |
 88%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A simple harmonic wave having an amplitude a and time period T is represented by the equation y=5 sinπt+4m Then the value of amplitude (a) in (m) and time period  (T) in second are       

(1) a=10, T=2   

(2) a=5, T=1

(3) a=10, T=1    

(4) a=5, T=2

Subtopic:  Simple Harmonic Motion |
 88%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The period of a simple pendulum measured inside a stationary lift is found to be T. If the lift starts accelerating upwards with acceleration of g/3 then the time period of the pendulum is

(a) T3

(b) T3

(c) 32T

(d) 3T

Subtopic:  Simple Harmonic Motion |
 88%
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints

advertisementadvertisement

The time period of a simple pendulum of length L as measured in an elevator descending with acceleration g3 is

(a) 2π3Lg

(b) π3Lg

(c) 2π3L2g

(d) 2π2L3g

Subtopic:  Simple Harmonic Motion |
 87%
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints