An ideal gas expands according to PV=constant. On expansion, the temperature of gas:
(1) will rise
(2) will drop
(3) will remain constant
(4) cannot be determined because the external pressure is not known
The compressibility of a gas is less than unity at STP. Therefore:
(1) Vm > 22.4 litre
(2) Vm < 22.4 litre
(3) Vm = 22.4 litre
(4) Vm = 44.8 litre
The numerical value of Cp-Cv for one mole of the ideal gas is equal to:
1. R
2. R/M
3. M/R
4. None of the above
In which case is the rate of diffusion highest if all are present in the same container at the same temperature:
1. 4 g H2
2. 32 g O2
3. 22 g CO2
4. 56 g N2
Partial pressure of Hydrogen in Flask containing 2 gm of H2 and 32 gm of SO2 is
1. 1/16 of total pressure
2. 1/2 of total pressure
3. 2/3 of total pressure
4. 1/8 of total pressure
At high pressure, the compressibility factor 'Z' is equal to -
1. Unity
4. Zero
The density of O2(g) is maximum at:-
1. STP
2. 273 K and 2 atm
3. 546 K and 1 atm
4. 546 K and 2 atm
A gas diffuses four time quickly as oxygen. The molecular weight of gas is:
1. 2
2. 4
3. 8
4. 16
If density of vapours of a substance of molar mass 18 gm / mole at 1 atm pressure and 500 K is 0.36 kg m–3 , then value of Z for the vapours is : (Take R = 0.082 L atm mole K–1)
(1)
(2)
(3) 1.1
(4) 0.9
A sample of water gas has a composition by volume of 50% H2, 45% CO and 5% CO2. Calculate the volume in litre at S.T.P. of water gas which on treatment with excess of stream will produce 5 litre H2. The equation for the reaction is : CO + H2O CO2+ H2
(1) 4.263 Litre
(2) 5.263 Litre
(3) 6.263 Litre
(4) 7.263 Litre