If an electron in an hydrogen atom jumps from an orbit ni=3 to an orbit with level nf=2, the frequency of the emitted radiation is 

1. v=36 C5 R 

2. v = CR6

3. v = 5 RC36

4. v  = 6 CR

Subtopic:  Bohr's Model of Atom |
 82%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The wavenumber of a photon in the Brackett series of a hydrogen atom is \(\frac{9}{400}R.\) What is the quantum number of the electron that has transited from the orbit?
1. \(5\)
2. \(6\)
3. \(4\)
4. \(7\)

Subtopic:  Spectral Series |
 64%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

In an experiment to determine the e/m value for an electron using Thomson's method the electrostatic deflection plates were 0.01 m apart and had a potential difference of 200 volts applied. Then the electric field strength between the plates is 

1. 1×104 V/m 

2. 2×104 V/m

3. 4×104 V/m 

4. 5×105 V/m

Subtopic:  Various Atomic Models |
 87%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

Hydrogen \({}_{1}\mathrm{H}^{1}\), Deuterium \({}_{1}\mathrm{H}^{2}\), singly ionised helium \(\left({}_{2}\mathrm{He}^{4}\right)^+\), and doubly ionised lithium\(\left({}_{3}\mathrm{Li}^{6}\right)^{+++}\) all have one electron around the nucleus. Consider an electron transition from \(n=2\) to \(n=1\). If the wavelengths of emitted radiations are \(\lambda_1, \lambda_2, \lambda_3~\text{and}~\lambda_4\) respectively, then approximately which one of the following is correct?
1. \(4 \lambda_1=2 \lambda_2=2 \lambda_3=\lambda_4\)
2. \( \lambda_1=2 \lambda_2=2 \lambda_3=\lambda_4\)
3. \( \lambda_1=\lambda_2=4 \lambda_3=9\lambda_4\)
4. \( \lambda_1=2\lambda_2=3 \lambda_3=\lambda_4\)

Subtopic:  Bohr's Model of Atom |
 79%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

To explain his theory, Bohr used

1. conservation of linear momentum

2. conservation of angular momentum

3. conservation of quantum  frequency

4. conservation of energy

Subtopic:  Bohr's Model of Atom |
 86%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The photon radiated from hydrogen corresponding to the second line of Lyman series is absorbed by a hydrogen-like atom X in the second excited state.   As a result the hydrogen-like atom X makes a transition to nth orbit. Then:

1. X = He+, n=4 

2. X = Li++, n = 6

3. X = He+, n=9 

4. X = Li++, n = 9

 

Subtopic:  Spectral Series |
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

The ionisation energy of hydrogen atom is 13.6 eV, the ionisation energy of helium atom would be [1988]

1. 13.6 eV

2. 27.2 eV 

3. 6.8 eV

4. 54.4 eV

Subtopic:  Bohr's Model of Atom |
 77%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The ionization energy of 10 times ionized sodium atom is:

1. 13.6 eV 

2. 13.6×11 eV 

3. 13.611eV 

4. 13.6×(11)2 eV

Subtopic:  Bohr's Model of Atom |
 67%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The ionisation potential of helium atom is 24.6 volt, the energy required to ionise it will be

1. 24.6 eV 

2. 24.6 volt 

3. 13.6 volt 

4.13..6 eV

Subtopic:  Various Atomic Models |
 68%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

When hydrogen atom is in its first excited level, its radius is [1997]

1. four times, its ground state radius

2. twice, its ground state radius

3. same as its ground state radius

4. half of its ground state radius

Subtopic:  Bohr's Model of Atom |
 84%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch