The power obtained in a reactor using \(\mathrm{U}^{235}\) disintegration is \(1000\) kW. The mass decay of \(\mathrm{U}^{235}\) per hour is:
1. \(1\) microgram
2. \(10\) microgram
3. \(20\) microgram
4. \(40\) microgram
Light energy emitted by stars is due to
1. Breaking of nuclei
2.Joining of nuclei
3. Burning of nuclei
4. Reflection of solar light
The constituents of atomic nuclei are believed to be [1991]
1. neutrons and protons
2. protons only
3. electrons and protons
4. electrons, protons and neutrons
The half-life of radium is about 1600 yr. Of 100 g of radium existing now, 25 g will remain unchanged after [2004]
1. 4800 yr
2. 6400 yr
3. 2400 yr
4. 3200 yr
Half-life of a radioactive substance is 12.5 h and its mass is 256 g. After what time, the amount of remaining substance is 1 g? [2001]
1. 75 h
2. 100 h
3. 125 h
4. 150 h
A radioactive substance disintegrates 1/64 of initial value in 60 s. The half-life of this substance is
1. 5 s
2. 10 s
3. 30 s
4. 20 s
The nucleus absorbs an energetic neutron and emits a beta particle . The resulting nucleus is
1.
2.
3.
4.
If in a nuclear fusion process, the masses of the fusion nuclei be and the mass of the resultant nucleus be , then [2004]
1.
2.
3.
4.
The graph between the square root of the frequency of a specific line of the characteristic spectrum of X-rays and the atomic number of the target will be:
1.
2.
3.
4.
The nuclei of which one of the following pairs of nuclei are isotones? [2005]
1.
2.
3.
4.