A linear aperture whose width is \(0.02\) cm is placed immediately in front of a lens of focal length \(60\) cm. The aperture is illuminated normally by a parallel beam of wavelength \(5\times 10^{-5}\) cm. The distance of the first dark band of the diffraction pattern from the center of the screen is:
1. \(0.10~\text{cm}\)
2. \(0.25~\text{cm}\)
3. \(0.20~\text{cm}\)
4. \(0.15~\text{cm}\)
To unlock all the explanations of 6 chapters you need to be enrolled in MasterClass Course.
To unlock all the explanations of 6 chapters you need to be enrolled in MasterClass Course.
In Young's double-slit experiment, the separation \(d\) between the slits is \(2\) mm, the wavelength \(\lambda\) of the light used is \(5896~\mathring{A}\) and distance \(D\) between the screen and slits is \(100\) cm. It is found that the angular width of the fringes is \(0.20^{\circ}\). To increase the fringe angular width to \(0.21^{\circ}\) (with same \(\lambda\) and \(D\)) the separation between the slits needs to be changed to:
1. \(1.8\) mm
2. \(1.9\) mm
3. \(2.1\) mm
4. \(1.7\) mm
To unlock all the explanations of 6 chapters you need to be enrolled in MasterClass Course.
To unlock all the explanations of 6 chapters you need to be enrolled in MasterClass Course.
An astronomical refracting telescope will have large angular magnification and high angular resolution when it has an objective lens of:
1. | Small focal length and large diameter |
2. | Large focal length and small diameter |
3. | Large focal length and large diameter |
4. | Small focal length and small diameter |
To unlock all the explanations of 6 chapters you need to be enrolled in MasterClass Course.
To unlock all the explanations of 6 chapters you need to be enrolled in MasterClass Course.
The intensity at the maximum in a Young's double-slit experiment is \(I_0\). Distance between two slits is \(d = 5\lambda,\) where \(\lambda\) is the wavelength of light used in the experiment. What will be the intensity in front of one of the slits on the screen placed at a distance \(D = 10d\)?
1. \(\frac{I_0}{4}\)
2. \(\frac{3I_0}{4}\)
3. \(\frac{I_0}{2}\)
4. \(I_0\)
To unlock all the explanations of 6 chapters you need to be enrolled in MasterClass Course.
To unlock all the explanations of 6 chapters you need to be enrolled in MasterClass Course.
Two slits in young’s experiment have widths in the ratio 1:25. The ratio of intensity at the maxima and minima in the interference pattern is
1.
2.
3.
4.
To unlock all the explanations of 6 chapters you need to be enrolled in MasterClass Course.
To unlock all the explanations of 6 chapters you need to be enrolled in MasterClass Course.
To unlock all the explanations of 6 chapters you need to be enrolled in MasterClass Course.
To unlock all the explanations of 6 chapters you need to be enrolled in MasterClass Course.
To unlock all the explanations of 6 chapters you need to be enrolled in MasterClass Course.
To unlock all the explanations of 6 chapters you need to be enrolled in MasterClass Course.
1. | \(0.2~\text{mm}\) | 2. | \(0.1~\text{mm}\) |
3. | \(0.5~\text{mm}\) | 4. | \(0.02~\text{mm}\) |
To unlock all the explanations of 6 chapters you need to be enrolled in MasterClass Course.
To unlock all the explanations of 6 chapters you need to be enrolled in MasterClass Course.
A beam of light of λ = 600 nm from a distant source falls on a single slit 1 mm wide and the resulting diffraction pattern is observed on a screen 2 m away. The distance between the first dark fringes on either side of the central bright fringe is :
1. 1.2 cm
2. 1.2 mm
3. 2.4 cm
4. 2.4 mm
To unlock all the explanations of 6 chapters you need to be enrolled in MasterClass Course.
To unlock all the explanations of 6 chapters you need to be enrolled in MasterClass Course.
In Young's double-slit experiment, the intensity of light at a point on the screen where the path difference is \(\lambda\) is \(K\), (\(\lambda\) being the wavelength of light used). The intensity at a point where the path difference is \(\frac{\lambda}{4}\) will be:
1. \(K\)
2. \(\frac{K}{4}\)
3. \(\frac{K}{2}\)
4. zero
To unlock all the explanations of 6 chapters you need to be enrolled in MasterClass Course.
To unlock all the explanations of 6 chapters you need to be enrolled in MasterClass Course.