A person can see clearly objects only when they lie between \(50~\text{cm}\) and \(400~\text{cm}\) from his eyes. In order to increase the maximum distance of distinct vision to infinity, the type and power of the correcting lens, the person has to use, will be
1. | \(\text{convex, +2.25 diopter}\) | 2. | \(\text{concave, -0.25 diopter}\) |
3. | \(\text{concave, -0.2 diopter}\) | 4. | \(\text{convex, +0.5 diopter}\) |
To unlock all the explanations of 14 chapters you need to be enrolled in MasterClass Course.
To unlock all the explanations of 14 chapters you need to be enrolled in MasterClass Course.
To unlock all the explanations of 14 chapters you need to be enrolled in MasterClass Course.
To unlock all the explanations of 14 chapters you need to be enrolled in MasterClass Course.
To unlock all the explanations of 14 chapters you need to be enrolled in MasterClass Course.
To unlock all the explanations of 14 chapters you need to be enrolled in MasterClass Course.
To unlock all the explanations of 14 chapters you need to be enrolled in MasterClass Course.
To unlock all the explanations of 14 chapters you need to be enrolled in MasterClass Course.
To unlock all the explanations of 14 chapters you need to be enrolled in MasterClass Course.
To unlock all the explanations of 14 chapters you need to be enrolled in MasterClass Course.
To unlock all the explanations of 14 chapters you need to be enrolled in MasterClass Course.
To unlock all the explanations of 14 chapters you need to be enrolled in MasterClass Course.
If the focal length of the objective lens is increased, then magnifying power of:
1. | microscope will increase but that of telescope decrease |
2. | microscope and telescope both will increase |
3. | microscope and telescope both will decrease |
4. | microscope will decrease but that of the telescope will increase |
To unlock all the explanations of 14 chapters you need to be enrolled in MasterClass Course.
To unlock all the explanations of 14 chapters you need to be enrolled in MasterClass Course.
The angle of a prism is 'A'. One of its refracting surfaces is silvered. Light rays falling at an angle of incidence 2A on the first surface returns back through the same path after suffering reflection at the silvered surface. The refractive index μ, of the prism, is :
1. 2sin A
2. 2cosA
3. cos A
4. tan A
To unlock all the explanations of 14 chapters you need to be enrolled in MasterClass Course.
To unlock all the explanations of 14 chapters you need to be enrolled in MasterClass Course.
To unlock all the explanations of 14 chapters you need to be enrolled in MasterClass Course.
To unlock all the explanations of 14 chapters you need to be enrolled in MasterClass Course.
To unlock all the explanations of 14 chapters you need to be enrolled in MasterClass Course.
To unlock all the explanations of 14 chapters you need to be enrolled in MasterClass Course.