A charged particle having drift velocity of \(7.5\times10^{-4}~\text{ms}^{-1}\) in an electric field of \(3\times10^{-10}~\text{Vm}^{-1},\) has mobility of:
1. \(2.5\times 10^{6}~\text{m}^2\text{V}^{-1}\text{s}^{-1}\)
2. \(2.5\times 10^{-6}~\text{m}^2\text{V}^{-1}\text{s}^{-1}\)
3. \(2.25\times 10^{-15}~\text{m}^2\text{V}^{-1}\text{s}^{-1}\)
4. \(2.25\times 10^{15}~\text{m}^2\text{V}^{-1}\text{s}^{-1}\)
A resistance wire connected in the left gap of a meter bridge balances a \(10~\Omega\) resistance in the right gap at a point which divides the bridge wire in the ratio \(3:2\). lf the length of the resistance wire is \(1.5~\text{m}\), then the length of \(1~\Omega\) of the resistance wire will be:
1. \(1.0\times 10^{-1}~\text{m}\)
2. \(1.5\times 10^{-1}~\text{m}\)
3. \(1.5\times 10^{-2}~\text{m}\)
4. \(1.0\times 10^{-2}~\text{m}\)
The colour code of resistance is given below:
The values of resistance and tolerance, respectively are:
1. 47 k, 10%
2. 4.7 k, 5%
3. 470 , 5%
4. 470 k, 5%
Which of the following graph represents the variation of resistivity () with temperature (\(T\)) for copper?
1. | 2. | ||
3. | 4. |
In a potentiometer arrangement, a cell of emf \(1.25\) V gives a balance point at \(35.0\) cm length of the wire. If the cell is replaced by another cell and the balance point shifts to \(63.0\) cm, then the emf of the second cell is:
1. \(1.27\) V
2. \(2.25\) V
3. \(3.27\) V
4. \(3.25\) V
Choose the correct alternative.
1. | Alloys of metals usually have less resistivity than that of their constituent metals. |
2. | Alloys usually have much higher temperature coefficients of resistance than pure metals. |
3. | The resistivity of the alloy manganin is nearly independent with an increase of temperature. |
4. | The resistivity of a typical insulator (e.g., amber) is less than that of a metal by a factor of the order of 10 22 / 10 23 . |
Given \(n\) resistors each of resistance \(R,\) what is the ratio of the maximum to minimum resistance?
1. \(\dfrac{1}{n}\)
2. \(n\)
3. \(\dfrac{1}{n^2}\)
4. \(n^2\)
Given the resistances of 1Ω, 2Ω, 3Ω, how will we combine them to get an equivalent resistance of (11/3):
1. | 1Ω, 2Ω in parallel and the combination in series with 3Ω |
2. | 3Ω, 2Ω in parallel and the combination in series with 1Ω |
3. | 1Ω, 2Ω and 3Ω in parallel |
4. | 1Ω, 2Ω in series and the combination in parallel with 3Ω |
The number density of free electrons in a copper conductor is \(8.5×10^{28}~\text m^{–3}.\) How long does an electron take to drift from one end of a wire \(3.0~\text m\) long to its other end?
(the area of the cross-section of the wire is \(2.0×10^{–6}~\text m^2\) and it is carrying a current of \(3.0~\text A\))
1. \(2.7 \times10^{4}~\text s\)
2. \(3.3 \times10^{4}~\text s\)
3. \(2.0 \times10^{3}~\text s\)
4. \(3.9 \times10^{3}~\text s\)