701 J of heat is absorbed by a system and 394 J of work is done by the system. The change in internal energy for the process is:
1. | 307 J | 2. | -307 J |
3. | 1095 J | 4. | -701 J |
The reaction of cyanamide, with dioxygen, was carried out in a bomb calorimeter, and ∆U was found to be at 298 K.
\(\small{\mathrm{NH}_2 \mathrm{CN}(\mathrm{s})+\frac{3}{2} \mathrm{O}_2(\mathrm{g}) \rightarrow \mathrm{N}_2(\mathrm{g})+\mathrm{CO}_2(\mathrm{g})+\mathrm{H}_2 \mathrm{O}(\mathrm{l})}\)
The enthalpy change for the reaction at 298 K would be:
The amount of heat needed to raise the temperature of 60.0 g of aluminium from 35°C to 55°C would be:
(Molar heat capacity of Al is \(24\) \(J\) \(\text{mol}^{- 1}\) \(K^{- 1}\))
1. | \(1 . 07\) \(J\) | 2. | \(1 . 07\) \(kJ\) |
3. | \(106 . 7\) \(kJ\) | 4. | \(100 . 7\) \(kJ\) |
The enthalpy of formation of are –110 kJ , – 393 kJ , 81 kJ and 9.7 kJ \(\text{mol}^{- 1}\) respectively. The value of \(\left(\Delta\right)_{r} H\) for the following reaction would be:
\(\mathrm{N_{2} O_{4 \left(g\right)} + 3 CO{\left(g\right)} \rightarrow N_{2} O_{\left(g\right)} + 3CO_{2 \left(g\right)}}\)
1. | \(- 777 . 7\) \(kJ\) \(\text{mol}^{- 1}\) | 2. | \(\) \(+ 777 . 7\) \(kJ\) \(\text{mol}^{- 1}\) |
3. | \(\) \(+ 824 . 9\) \(kJ\) \(\text{mol}^{- 1}\) | 4. | \(-\) \(345 . 4\) \(kJ\) \(\text{mol}^{- 1}\) |
. The standard enthalpy of formation of gas in the above reaction would be:
1. | -92.4 J (mol)-1 | 2. | -46.2 kJ (mol)-1 |
3. | +46.2 J (mol)-1 | 4. | +92.4 kJ (mol)-1 |
The standard enthalpy of the formation of CH3OH(l) from the following data is:
\(\small{\mathrm{CH}_3 \mathrm{OH}_{(l)}+\frac{3}{2} \mathrm{O}_2(\mathrm{g}) \rightarrow \mathrm{CO}_2(\mathrm{g})+2 \mathrm{H}_2 \mathrm{O}_{(l)} \text {; }}\) \( \Delta_{\mathrm{r}} \mathrm{H}^{\circ}=-726 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}\) |
\(\small{\mathrm{C}(\mathrm{s})+\mathrm{O}_2(\mathrm{g}) \rightarrow \mathrm{CO}_2(\mathrm{g}) \text {; } }\) \(\Delta_{\mathrm{c}} \mathrm{H}^{\circ}=-393 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}\) |
\(\small{\mathrm{H}_{2(\mathrm{g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{g})} \rightarrow \mathrm{H}_2 \mathrm{O}_{(l)} \text {; } } \) \(\Delta_{\mathrm{f}} \mathrm{H}^{\circ}=-286 \mathrm{~kJ} \mathrm{~mol}^{-1}\) |
1. | −239 kJ mol−1 | 2. | +239 kJ mol−1 |
3. | −47 kJ mol−1 | 4. | +47 kJ mol−1 |
The enthalpy change for the reaction
would be:
1. | 2. | ||
3. | 4. |
For an isolated system with ∆U = 0, the ∆S value will be:
1. | Positive | 2. | Negative |
3. | Zero | 4. | Not possible to define |
For the reaction at 298 K,
2A + B → C
ΔH = 400 kJ mol−1 and ΔS = 0.2 kJ K−1 mol−1. The reaction will become spontaneous at:
1. | 1500 K | 2. | 2000 K |
3. | 100 K | 4. | 1900K |
The value of ∆G° for the given reaction would be:
\( 2 \mathrm{~A}(\mathrm{~g})+\mathrm{B}(\mathrm{~g}) \rightarrow 2 \mathrm{D}(\mathrm{~g})\)
(Given: ∆U° = – 10.5 kJ and ∆S° = – 44.1 J K–1)
1. | 1.6 J | 2. | –0.16 kJ |
3. | 0.16 kJ | 4. | 1.6 kJ |