The electric field at a point on the equatorial plane at a distance \(r\) from the centre of a dipole having dipole moment \(\overrightarrow{P}\) is given by:
(\(r\gg\) separation of two charges forming the dipole, \(\varepsilon_{0} =\) permittivity of free space) 
1. \(\overrightarrow{E}=\dfrac{\overrightarrow{P}}{4\pi \varepsilon _{0}r^{3}}\)
2. \(\overrightarrow{E}=\dfrac{2\overrightarrow{P}}{\pi \varepsilon _{0}r^{3}}\)
3. \(\overrightarrow{E}=-\dfrac{\overrightarrow{P}}{4\pi \varepsilon _{0}r^{2}}\)
4. \(\overrightarrow{E}=-\dfrac{\overrightarrow{P}}{4\pi \varepsilon _{0}r^{3}}\)

Subtopic:  Electric Dipole |
 65%
From NCERT
NEET - 2020
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The acceleration of an electron due to the mutual attraction between the electron and a proton when they are \(1.6~\mathring{A}\) apart is:
\(\left(\frac{1}{4 \pi \varepsilon_0}=9 \times 10^9~ \text{Nm}^2 \text{C}^{-2}\right)\)

1. \( 10^{24} ~\text{m/s}^2\) 2 \( 10^{23} ~\text{m/s}^2\)
3. \( 10^{22}~\text{m/s}^2\) 4. \( 10^{25} ~\text{m/s}^2\)
Subtopic:  Coulomb's Law |
 76%
From NCERT
NEET - 2020
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A spherical conductor of radius \(10~\text{cm}\) has a charge of \(3.2 \times 10^{-7}~\text{C}\) distributed uniformly. What is the magnitude of the electric field at a point \(15~\text{cm}\) from the centre of the sphere? 
\(\left(\frac{1}{4\pi \varepsilon _0} = 9\times 10^9~\text{N-m}^2/\text{C}^2\right)\)

1. \(1.28\times 10^{5}~\text{N/C}\)
2. \(1.28\times 10^{6}~\text{N/C}\)
3. \(1.28\times 10^{7}~\text{N/C}\)
4. \(1.28\times 10^{4}~\text{N/C}\)

Subtopic:  Electric Field |
 66%
From NCERT
NEET - 2020
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A sphere encloses an electric dipole with charges \(\pm3\times10^{-6}~\text C.\) What is the total electric flux through the sphere?
1. \(-3\times10^{-6}~\text{N-m}^2/\text C\) 
2. zero
3. \(3\times10^{-6}~\text{N-m}^2/\text C\)
4. \(6\times10^{-6}~\text{N-m}^2/\text C\)

Subtopic:  Gauss's Law |
 90%
From NCERT
NEET - 2019
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Two parallel infinite line charges with linear charge densities \(+\lambda~\text{C/m}\) and \(+\lambda~\text{C/m}\) are placed at a distance \({R}.\) The electric field mid-way between the two line charges is:

1. \(\frac{\lambda}{2 \pi \varepsilon_0 {R}}~\text{N/C}\) 2. zero
3. \(\frac{2\lambda}{ \pi \varepsilon_0 {R}} ~\text{N/C}\) 4. \(\frac{\lambda}{ \pi \varepsilon_0 {R}}~\text{N/C}\) 
Subtopic:  Gauss's Law |
 68%
From NCERT
NEET - 2019
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Two point charges \(A\) and \(B,\) having charges \(+Q\) and \(-Q\) respectively, are placed at a certain distance apart and the force acting between them is \(F.\) If \(25\%\) charge of \(A\) is transferred to \(B,\) then the force between the charges becomes:
1. \(\frac{4F}{3}\) 2. \(F\)
3. \(\frac{9F}{16}\) 4. \(\frac{16F}{9}\)
Subtopic:  Coulomb's Law |
 78%
From NCERT
NEET - 2019
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A hollow metal sphere of radius \(R\) is uniformly charged. The electric field due to the sphere at a distance \(r\) from the centre:

1. decreases as \(r\) increases for \(r<R\) and for \(r>R\).
2. increases as \(r\) increases for \(r<R\) and for \(r>R\).
3. is zero as \(r\) increases for \(r<R\), decreases as \(r\) increases for \(r>R\).
4. is zero as \(r\) increases for \(r<R\), increases as \(r\) increases for \(r>R\).
Subtopic:  Electric Field |
 77%
From NCERT
NEET - 2019
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

A hollow cylinder has a charge \(q\) coulomb within it (at the geometrical centre). If \(\phi\) is the electric flux in units of Volt-meter associated with the curved surface \(B,\) the flux linked with the plane surface \(A\) in units of volt-meter will be: 
           
1. \(\frac{1}{2}\left(\frac{q}{\varepsilon_0}-\phi\right)\)
2. \(\frac{q}{2\varepsilon_0}\)
3. \(\frac{\phi}{3}\)
4. \(\frac{q}{\varepsilon_0}-\phi\)

Subtopic:  Gauss's Law |
 76%
From NCERT
AIPMT - 2007
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Three-point charges \(+q\), \(-2q\) and \(+q\) are placed at points \((x=0,y=a,z=0)\)\((x=0, y=0,z=0)\) and \((x=a, y=0, z=0)\), respectively. The magnitude and direction of the electric dipole moment vector of this charge assembly are:

1. \(\sqrt{2}qa\) along \(+y\) direction
2. \(\sqrt{2}qa\) along the line joining points \((x=0,y=0,z=0)\) and \((x=a,y=a,z=0)\)
3. \(qa\) along the line joining points \((x=0,y=0,z=0)\) and \((x=a,y=a,z=0)\)
4. \(\sqrt{2}qa\) along \(+x\) direction
Subtopic:  Electric Dipole |
 85%
From NCERT
AIPMT - 2007
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A thin conducting ring of the radius \(R\) is given a charge \(+Q.\) The electric field at the centre \(O\) of the ring due to the charge on the part \(AKB\) of the ring is \(E.\) The electric field at the centre due to the charge on the part \(ACDB\) of the ring is:
              

1. \(3E\) along \(KO\)
2. \(E\) along \(OK\)
3. \(E\) along \(KO\)
4. \(3E\) along \(OK\)
Subtopic:  Electric Field |
 76%
From NCERT
AIPMT - 2008
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch