A metal ring of mass m and radius R is placed on smooth horizontal table and is set rotating about its own axis in such a way that each part of the ring moves with a speed v. Tension in the ring is:
1.
2.
3.
4. None of these
Tension on the string at point is . The graph for tension versus is shown in the figure. Then the string is:
1. | massless |
2. | massfull |
3. | tension on every point on the string is same when the string is having finite mass |
4. | None of these |
A block is kept on a rough inclined plane with angle of inclination . The graph of net reaction (R) versus is:
1. | ![]() |
2. | ![]() |
3. | ![]() |
4. | None of these |
A block is placed on a rough horizontal plane. A time dependent horizontal force F=kt acts on the block. The acceleration time graph of the block is :
1. | ![]() |
2. | ![]() |
3. | ![]() |
4. | ![]() |
A motorcycle is going on an overbridge of radius R. The driver maintains a constant speed. As the motorcycle is ascending on the overbridge, the normal force on it:
1. Increases
2. decreases
3. remains the same
4. fluctuates erratically
A rod of length L and mass m is acted on by two unequal forces and as shown in the following figure
The tension in the rod at a distance y from the end A is given by :
1.
2.
3.
4. None of the above
Two blocks 'A' and 'B' each of mass 'm' are placed on a smooth horizontal surface. Two horizontal force F and 2F are applied on both the blocks 'A' and 'B' respectively as shown in figure. The block A does not slide on block B. Then the normal reaction acting between the two blocks is:
1.
2.
3.
4.
Five persons A, B, C, D & E are pulling a cart of mass 100 kg on a smooth surface and the cart is moving with acceleration 3 in east direction. When person 'A' stops pulling, it moves with acceleration 1 in the west direction. When person 'B' stops pulling, it moves with acceleration 24 in the north direction. The magnitude of the acceleration of the cart when only A & B pull the cart keeping their directions same as the old directions are:
1. 26
2.
3. 25
4. 30
Two masses, and , are connected by a light string passing over a smooth pulley. When mass moves up by m in sec, the ratio is:
1. | 2. | ||
3. | 4. |
The engine of a car produces an acceleration of 4 m/s2 in the car. If this car pulls another car of the same mass, what will be the acceleration produced?
1. 8 m/s2
2. 2 m/s2
3. 4 m/s2
4.