The compound that contains zero oxidation state of Fe is:
1. | [Fe(CN)6]-4 | 2. | [Fe(CN)6]-3 |
3. | Fe(CO)5 | 4. | All of the above. |
a | b | c | d | e | f | |
1. | 2 | 4 | 6 | 8 | 4 | 2 |
2. | 1 | 4 | 10 | 3 | 1 | 4 |
3. | 4 | 1 | 10 | 1 | 3 | 4 |
4. | 10 | 4 | 1 | 3 | 4 | 2 |
Best description of the behavior of bromine in the reaction given below is:
1. Both oxidized and reduced
2. Oxidized only
3. Reduced only
4. Proton acceptor only
If the oxidation numbers of A, B, and C are + 2, +5, and –2 respectively, then the possible formula of the compound is:
1. | A2(BC2)2 | 2. | A3(BC4)2 |
3. | A2(BC3)2 | 4. | A3(B2C)2 |
A non-feasible reaction among the following is:
1.
2.
3.
4.
Standard electrode potentials are:
,
Choose the correct observation if , and Fe block are kept together:
1. increases
2. decreases
3. remains unchanged
4. decreases
The oxidation states(O.S.) of sulphur in the anions follow the order:
1.
2.
3.
4.
Fluorine reacts with ice as per the following reaction
H2O(s) + F2(g) → HF(g) + HOF(g)
This reaction is a redox reaction because-
1. | F2 is getting oxidized. | 2. | F2 is getting reduced. |
3. | Both (1) and (2)
|
4. | None of the above. |
The oxidation number of sulphur and nitrogen in H2SO5 and NO3- are respectively-
1. | +6, +5 | 2. | -6, -6 |
3. | +8, +6 | 4. | -8, -6 |
The formulas for the following compounds are:
(a) Mercury(II) chloride and (b) Thallium(I) sulphate
1. HgCl2, Tl2SO4
2. Hg2Cl2, Tl2SO4
3. HgCl2, TlSO4
4. HgCl2, Tl3SO4