1. | \(\frac{S}{2},\frac{\sqrt{3gS}}{2}\) | 2. | \(\frac{S}{4}, \sqrt{\frac{3gS}{2}}\) |
3. | \(\frac{S}{4},\frac{3gS}{2}\) | 4. | \(\frac{S}{4},\frac{\sqrt{3gS}}{3}\) |
The escape velocity from the Earth's surface is \(v\). The escape velocity from the surface of another planet having a radius, four times that of Earth and the same mass density is:
1. | \(3v\) | 2. | \(4v\) |
3. | \(v\) | 4. | \(2v\) |
A particle of mass \(m\) is projected with a velocity, \(v=kv_{e} ~(k<1)\) from the surface of the earth. The maximum height, above the surface, reached by the particle is:
(Where \(v_e=\) escape velocity, \(R=\) the radius of the earth)
1. | \(\dfrac{R^{2}k}{1+k}\) | 2. | \(\dfrac{Rk^{2}}{1-k^{2}}\) |
3. | \(R\left ( \dfrac{k}{1-k} \right )^{2}\) | 4. | \(R\left ( \dfrac{k}{1+k} \right )^{2}\) |
Assume that earth and mars move in circular orbits around the sun, with the martian orbit being \(1.52\) times the orbital radius of the earth. The length of the martian year in days is approximately:
(Take \((1.52)^{3/2}=1.87\))
1. | \(344\) days | 2. | \(684\) days |
3. | \(584\) days | 4. | \(484\) days |
1. | \(3.13\times10^{9}~\text{J}\) | 2. | \(3.13\times10^{10}~\text{J}\) |
3. | \(4.13\times10^{9}~\text{J}\) | 4. | \(4.13\times10^{8}~\text{J}\) |
1. | \(6 . 48 \times 10^{23} \text{ kg}\) | 2. | \(6 . 48 \times 10^{25} \text{ kg}\) |
3. | \(6 . 48 \times 10^{20} \text{ kg}\) | 4. | \(6 . 48 \times 10^{21} \text{ kg}\) |