An electron is traveling along the x-direction. It encounters a magnetic field in the y-direction. Its subsequent motion will be:
1. Straight-line along the x-direction
2. A circle in the xz-plane
3. A circle in the yz-plane
4. A circle in the xy-plane
1. | \(B\) acts along the \(x\text-\)axis |
2. | \(B\) acts along the \(y\text-\)axis |
3. | \(B\) acts along the \(z\text-\)axis |
4. | \(B\) can act along any of the above direction for the net force to be zero |
A circular coil of wire of radius 'r' has 'n' turns and carries a current 'I'. The magnetic induction (B) at a point on the axis of the coil at a distance from its center is :
1.
2.
3.
4.
The dots in the figure depict a magnetic field that is perpendicular to the plane of the paper and emanates from it. The trajectory of a particle in the plane of the paper is depicted by the curve \(ABC\). What exactly is the particle?
1. | Proton. | 2. | Electron. |
3. | Neutron. | 4. | It cannot be predicted. |
1. | the speed will change. |
2. | the direction will change. |
3. | both (1) and (2) |
4. | none of the above |
The unit of reduction factor of the tangent galvanometer is
(1) Ampere
(2) Gauss
(3) Radian
(4) None of these
A galvanometer of \(50~\Omega \) resistance has 25 divisions. A current of 4 × 10–4 A gives a deflection of one division. To convert this galvanometer into a voltmeter having a range of 25 V, it should be connected with a resistance of:
1. 2500 Ω as a shunt
2. 2450 Ω as a shunt
3. 2550 Ω in series
4. 2450 Ω in series
The figure shows a particle of charge q and mass m moving with velocity v along the x-axis enters a region of the uniform magnetic field. The minimum value of v so that the charge q is deflected by an angle is
1.
2.
3.
4.
The electric charge in uniform motion produces :
(1) An electric field only
(2) A magnetic field only
(3) Both electric and magnetic field
(4) Neither electric nor magnetic field