The current \(I\) as shown in the circuit will be:
1. | \(10~\text{A}\) | 2. | \(\dfrac{20}{3}~\text{A}\) |
3. | \(\dfrac{2}{3}~\text{A}\) | 4. | \(\dfrac{5}{3}~\text{A}\) |
A meter bridge is set up to determine unknown resistance \(x\) using a standard \(10~\Omega\) resistor. The galvanometer shows the null point when the tapping key is at a \(52\) cm mark. End corrections are \(1\) cm and \(2\) cm respectively for end \(A\) and \(B\). Then the value of \(x\) is:
1. \(10.2~\Omega\)
2. \(10.6~\Omega\)
3. \(10.8~\Omega\)
4. \(11.1~\Omega\)
The resistivity of iron is 1 × 10–7 ohm – m. The resistance of iron wire of particular length and thickness is 1 ohm. If the length and the diameter of wire both are doubled, then the resistivity in ohm – m will be :
(1) 1 × 10–7
(2) 2 × 10–7
(3) 4 × 10–7
(4) 8 × 10–7
The resistivity of a wire :
1. | Increases with the length of the wire |
2. | Decreases with the area of cross-section |
3. | Decreases with the length and increases with the cross-section of the wire |
4. | None of the above statement is correct |
Drift velocity \(v_d\) varies with the intensity of electric field as per the relation:
1. \(v_{d} \propto E\)
2. \(v_{d} \propto \frac{1}{E}\)
3. \(v_{d}= \text{constant}\)
4. \(v_{d} \propto E^2\)
In a conductor 4 coulombs of charge flows for 2 seconds. The value of electric current will be :
(1) 4 volts
(2) 4 amperes
(3) 2 amperes
(4) 2 volts
The specific resistance of a wire is ρ, its volume is 3 m3 and its resistance is 3 ohms, then its length will be
(1)
(2)
(3)
(4)
When a piece of aluminum wire of finite length is drawn through a series of dies to reduce its diameter to half its original value, its resistance will become :
(1) Two times
(2) Four times
(3) Eight times
(4) Sixteen times
Through a semiconductor, an electric current is due to drift off:
(1) Free electrons
(2) Free electrons and holes
(3) Positive and negative ions
(4) Protons
1. | proportional to \(T\). | 2. | proportional to\(\sqrt{T} \) |
3. | zero. | 4. | finite but independent of temperature. |