The unit of specific resistance is
1. Ohm / cm2
2. Ohm / cm
3. Ohm - cm
4. (Ohm - cm)-1
If \(u_1\) and \(u_2\) are the units selected in two systems of measurement and \(n_1\) and \(n_2\) are their numerical values, then:
1. | \(n_1u_1=n_2u_2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \) |
2. | \(n_1u_1+n_2u_2=0\) |
3. | \(n_1n_2=u_1u_2\) |
4. | \((n_1+u_1)=(n_2+u_2)\) |
If , where x is the distance travelled by the body in kilometres while t is the time in seconds, then the units of b are
1.
2.
3.
4.
Given the equation \(\left(P+\frac{a}{V^2}\right)(V-b)=\text {constant}\). The units of \(a\) will be: (where \(P\) is pressure and \(V\) is volume)
1. \(\text{dyne} \times \text{cm}^5\)
2. \(\text{dyne} \times \text{cm}^4\)
3. \(\text{dyne} / \text{cm}^3\)
4. \(\text{dyne} / \text{cm}^2\)
Dimensions of one or more pairs are same. Identify the pairs
1. Torque and work
2. Angular momentum and work
3. Energy and Young's modulus
4. Year and wavelength
The frequency of vibration f of a mass m suspended from a spring of spring constant K is given by a relation of this type ; where C is a dimensionless quantity. The value of x and y are
1.
2.
3.
4.
The quantities A and B are related by the relation, m = A/B, where m is the linear density and A is the force. The dimensions of B are of
1. Pressure
2. Work
3. Latent heat
4. None of the above