In C.G.S. system the magnitutde of the force is 100 dynes. In another system where the fundamental physical quantities are kilogram, metre and minute, the magnitude of the force is
1. 0.036
2. 0.36
3. 3.6
4. 36
The unit of the coefficient of viscosity in S.I. system is
1.
2.
3.
4.
If C and R represent capacitance and resistance respectively, then the dimensions of RC are
[Only for droppers]
1.
2.
3.
4. None of the above
The frequency of vibration f of a mass m suspended from a spring of spring constant K is given by a relation of this type ; where C is a dimensionless quantity. The value of x and y are
1.
2.
3.
4.
The velocity of water waves v may depend upon their wavelength , the density of water and the acceleration due to gravity g. The method of dimensions gives the relation between these quantities as:
1.
2.
3.
4.
The equation of a wave is given by where is the angular velocity, x is length and is the linear velocity. The dimension of k is
1. LT
2. T
3.
4. T2
The period of oscillation of a simple pendulum is given by \(T = 2\pi \sqrt{\frac{L}{g}}\) where \(L\) is about \(100~\text{cm}\) and is known to have \(1~\text{mm}\) accuracy. The period is about \(2~\text{s}\). The time of \(100\) oscillations is measured by a stopwatch of least count \(0.1~\text{s}\). The percentage error in \(g\) is:
1. \(0.1\%\)
2. \(1\%\)
3. \(0.2\%\)
4. \(0.8\%\)