The determination of the value of acceleration due to gravity \((g)\) by simple pendulum method employs the formula,
\(g=4\pi^2\frac{L}{T^2}\)
The expression for the relative error in the value of \(g\) is:
1. | \(\frac{\Delta g}{g}=\frac{\Delta L}{L}+2\Big(\frac{\Delta T}{T}\Big)\) | 2. | \(\frac{\Delta g}{g}=4\pi^2\Big[\frac{\Delta L}{L}-2\frac{\Delta T}{T}\Big]\) |
3. | \(\frac{\Delta g}{g}=4\pi^2\Big[\frac{\Delta L}{L}+2\frac{\Delta T}{T}\Big]\) | 4. | \(\frac{\Delta g}{g}=\frac{\Delta L}{L}-2\Big(\frac{\Delta T}{T}\Big)\) |
When the circular scale of a screw gauge completes \(2\) rotations, it covers \(1\) mm over the pitch scale. The total number of circular scale divisions is \(50\). The least count of the screw gauge in metres is:
1. \(10^{-4}\)
2. \(10^{-5}\)
3. \(10^{-2}\)
4. \(10^{-3}\)
List-I | List-II | ||
(a) | Gravitational constant (\(G\)) | (i) | \([{L}^2 {~T}^{-2}] \) |
(b) | Gravitational potential energy | (ii) | \([{M}^{-1} {~L}^3 {~T}^{-2}] \) |
(c) | Gravitational potential | (iii) | \([{LT}^{-2}] \) |
(d) | Gravitational intensity | (iv) | \([{ML}^2 {~T}^{-2}]\) |
(a) | (b) | (c) | (d) | |
1. | (iv) | (ii) | (i) | (iii) |
2. | (ii) | (i) | (iv) | (iii) |
3. | (ii) | (iv) | (i) | (iii) |
4. | (ii) | (iv) | (iii) | (i) |
1. | both units and dimensions |
2. | units but no dimensions |
3. | dimensions but no units |
4. | no units and no dimensions |
1. | Random errors |
2. | Instrumental errors |
3. | Personal errors |
4. | Least count errors |