The acceleration of a moving body can be found from:
1. Area under the velocity-time graph
2. Area under the distance-time graph
3. Slope of the velocity-time graph
4. Slope of the distance-time graph
A particle starting from rest moving with constant acceleration travels a distance x in first 2 seconds and a distance y in next two seconds, then
1. y = x
2. y = 2x
3. y = 3x
4. y = 4x
The velocity of a body depends on time according to the equation . The body is undergoing
1. Uniform acceleration
2. Uniform retardation
3. Non-uniform acceleration
4. Zero acceleration
The position of a particle moving in the XY plane at any time t is given by metres. Select the correct statement about the moving particle from the following.
1. The acceleration of the particle is zero at t = 0 second
2. The velocity of the particle is zero at t = 0 second
3. The velocity of the particle is zero at t = 1 second
4. The velocity and acceleration of the particle are never zero
Two cars \(A\) and \(B\) are travelling in the same direction with velocities \(v_1\) and \(v_2 (v_1>v_2)\). When the car \(A\) is at a distance \(d\) behind car \(B\), the driver of the car \(A\) applied the brake producing uniform retardation \(a\). There will be no collision when:
1. \(d< \dfrac{(v_1-v_2)^2}{2a}\)
2. \(d< \dfrac{v^2_1-v^2_2}{2a}\)
3. \(d> \dfrac{(v_1-v_2)^2}{2a}\)
4. \(d> \dfrac{v^2_1-v^2_2}{2a}\)
A body moves from rest with a constant acceleration of 5 m/s2. Its instantaneous speed (in m/s) at the end of 10 sec is
1. 50
2. 5
3. 2
4. 0.5
The acceleration \(a\) in m/s2 of a particle is given by where t is the time. If the particle starts out with a velocity, \(u=2\) m/s at t = 0, then the velocity at the end of \(2\) seconds will be:
1. \(12\) m/s
2. \(18\) m/s
3. \(27\) m/s
4. \(36\) m/s
The displacement of a particle starting from rest (at t = 0) is given by . The time in seconds at which the particle will attain zero velocity again, is
1. 2
2. 4
3. 6
4. 8
A body is moving according to the equation where x = displacement and a, b and c are constants. The acceleration of the body is
1.
2.
3.
4.