The position of a particle moving in the XY plane at any time t is given by metres. Select the correct statement about the moving particle from the following.
1. The acceleration of the particle is zero at t = 0 second
2. The velocity of the particle is zero at t = 0 second
3. The velocity of the particle is zero at t = 1 second
4. The velocity and acceleration of the particle are never zero
If body having initial velocity zero is moving with uniform acceleration 8 m/sec2 , then the distance travelled by it in fifth second will be
1. 36 metres
2. 40 metres
3. 100 metres
4. Zero
An alpha particle enters a hollow tube of 4 m length with an initial speed of 1 km/s. It is accelerated in the tube and comes out of it with a speed of 9 km/s. The time for which it remains inside the tube is
1.
2.
3.
4.
Two cars \(A\) and \(B\) are travelling in the same direction with velocities \(v_1\) and \(v_2 (v_1>v_2)\). When the car \(A\) is at a distance \(d\) behind car \(B\), the driver of the car \(A\) applied the brake producing uniform retardation \(a\). There will be no collision when:
1. \(d< \dfrac{(v_1-v_2)^2}{2a}\)
2. \(d< \dfrac{v^2_1-v^2_2}{2a}\)
3. \(d> \dfrac{(v_1-v_2)^2}{2a}\)
4. \(d> \dfrac{v^2_1-v^2_2}{2a}\)
A body of mass 10 kg is moving with a constant velocity of 10 m/s. When a constant force acts for 4 seconds on it, it moves with a velocity 2 m/sec in the opposite direction. The acceleration produced in it is
1. 3 m/sec2
2. –3 m/sec2
3. 0.3 m/sec2
4. –0.3 m/sec2
A body starts from rest from the origin with an acceleration of \(6~\text{m/s}^2\) along the \(x\text-\)axis and \(8~\text{m/s}^2\) along the \(y\text-\)axis. Its distance from the origin after \(4\) seconds will be:
1. \(56~\text{m}\)
2. \(64~\text{m}\)
3. \(80~\text{m}\)
4. \(128~\text{m}\)
A car moving with a velocity of 10 m/s can be stopped by the application of a constant force F in a distance of 20 m. If the velocity of the car is 30 m/s, it can be stopped by this force in
1.
2. 20 m
3. 60 m
4. 180 m
The displacement of a particle is given by \(y = a + bt + ct^{2} - dt^{4}\). The initial velocity and acceleration are, respectively:
1. | \(b, -4d\) | 2. | \(-b,2c\) |
3. | \(b, ~2c\) | 4. | \(2c, -2d\) |
A car moving with a speed of 40 km/h can be stopped by applying brakes for atleast 2 m. If the same car is moving with a speed of 80 km/h, what is the minimum stopping distance ?
1. 8 m
2. 2 m
3. 4 m
4. 6 m