The displacement of a particle starting from rest (at t = 0) is given by . The time in seconds at which the particle will attain zero velocity again, is
1. 2
2. 4
3. 6
4. 8
Two cars A and B are at rest at the same point initially. If A starts with uniform velocity of 40 m/sec and B starts in the same direction with a constant acceleration of 4 m/s2, then B will catch A after how much time?
1. 10 sec
2. 20 sec
3. 30 sec
4. 35 sec
The motion of a particle is described by the equation where a = 15 cm and b = 3 cm/s2. Its instantaneous velocity at time 3 sec will be
1. 36 cm/sec
2. 18 cm/sec
3. 16 cm/sec
4. 32 cm/sec
Consider the acceleration, velocity and displacement of a tennis ball as it falls to the ground and bounces back. Directions of which of these changes in the process ?
1. Velocity only
2. Displacement and velocity
3. Acceleration, velocity and displacement
4. Displacement and acceleration
The displacement of a particle, moving in a straight line, is given by where s is in metres and t in seconds. The acceleration of the particle is
1. 2 m/s2
2. 4 m/s2
3. 6 m/s2
4. 8 m/s2
The velocity of a bullet is reduced from 200m/s to 100m/s while travelling through a wooden block of thickness 10cm. The retardation, assuming it to be uniform, will be
1. m/s2
2. m/s2
3. m/s2
4. m/s2
A student is standing at a distance of \(50\) metres from the bus. As soon as the bus begins its motion with an acceleration of \(1\) ms–2, the student starts running towards the bus with a uniform velocity \(u\). Assuming the motion to be along a straight road, the minimum value of \(u\), so that the student is able to catch the bus is:
1. \(5\) ms–1
2. \(8\) ms–1
3. \(10\) ms–1
4. \(12\) ms–1
An object accelerates from rest to a velocity of 27.5 m/s in 10 sec . Then find the distance covered by the object in the next 10 sec:
1. 550 m
2. 137.5 m
3. 412.5 m
4. 275 m
Speed of two identical cars are u and 4u at a specific instant. The ratio of the respective distances in which the two cars are stopped from that instant is:
1. 1 : 1
2. 1 : 4
3. 1 : 8
4. 1 : 16
A car, starting from rest, accelerates at the rate f through a distance S, then continues at a constant speed for time t and then decelerates at the rate to come to rest. If the total distance traversed is 15 S, then,
1.
2.
3.
4.