The motion of a particle is described by the equation where a = 15 cm and b = 3 cm/s2. Its instantaneous velocity at time 3 sec will be
1. 36 cm/sec
2. 18 cm/sec
3. 16 cm/sec
4. 32 cm/sec
A body travels for 15 sec starting from rest with constant acceleration. If it travels distances S1, S2 and S3 in the first five seconds, second five seconds and next five seconds respectively the relation between S1, S2 and S3 is
1.
2.
3.
4.
A body is moving according to the equation where x = displacement and a, b and c are constants. The acceleration of the body is
1.
2.
3.
4.
A particle travels 10 m in first 5 sec and 10m in the next 3 sec. Assuming constant acceleration what is the distance travelled in next 2 sec ?
1. 8.3 m
2. 9.3 m
3. 10.3 m
4. None of above
The distance travelled by a particle is proportional to the squares of time, then the particle travels with
1. Uniform acceleration
2. Uniform velocity
3. Increasing acceleration
4. Decreasing velocity
Velocity of a particle changes when
1. Direction of velocity changes
2. Magnitude of velocity changes
3. Both of above
4. None of the above
The motion of a particle is described by the equation u = at, where u is velocity and a is a constant. The distance travelled by the particle in the first 4 seconds
1. 4 a
2. 12 a
3. 6 a
4. 8 a
The relation \(3t = \sqrt{3x} + 6\) describes the displacement of a particle in one direction where \(x\) is in metres and \(t\) in seconds. The displacement, when velocity is zero, is:
1. | \(24\) metres | 2. | \(12\) metres |
3. | \(5\) metres | 4. | zero |
The average velocity of a body moving with uniform acceleration travelling a distance of 3.06 m is 0.34 ms–1. If the change in velocity of the body is 0.18ms–1 during this time, its uniform acceleration is
1. 0.01 ms–2
2. 0.02 ms–2
3. 0.03 ms–2
4. 0.04 ms–2
Equation of displacement for any particle is . Its acceleration at time t = 1 sec is
1. 10 m/s2
2. 16 m/s2
3. 25 m/s2
4. 32 m/s2