If the overbridge is concave instead of being convex, the thrust on the road at the lowest position will be
1.
2.
3.
4.
A particle moves in a circular orbit under the action of a central attractive force inversely proportional to the distance ‘r’. The speed of the particle is
1. Proportional to r2
2. Independent of r
3. Proportional to r
4. Proportional to 1/r
Two masses M and m are attached to a vertical axis by weightless threads of combined length l. They are set in rotational motion in a horizontal plane about this axis with constant angular velocity ω. If the tensions in the threads are the same during motion, the distance 'x' of M from the axis is-
1.
2.
3.
4.
A point mass \(m\) is suspended from a light thread of length \(l,\) fixed at \(O\), and is whirled in a horizontal circle at a constant speed as shown. From your point of view, stationary with respect to the mass, the forces on the mass are:
1. | 2. | ||
3. | 4. |
Three identical particles are joined together by a thread as shown in figure. All the three particles are moving in horizontal circles centred at O. If the velocity of the outermost particle is v0, then the ratio of tensions in the three sections of the string is
1. 3 : 5 : 7
2. 3 : 4 : 5
3. 7 : 11 : 6
4. 3 : 5 : 6
A bucket full of water is revolved in vertical circle of radius 2m. What should be the maximum time-period of revolution so that the water doesn't fall off the bucket ?
1. 1 sec
2. 2 sec
3. 3 sec
4. 4 sec
A tube of length L is filled completely with an incompressible liquid of mass M and closed at both the ends. The tube is then rotated in a horizontal plane about one of its ends with a uniform angular velocity ω. The force exerted by the liquid at the other end is
1.
2.
3.
4.
A car is moving in a circular horizontal track of radius \(10~\text{m}\) with a constant speed of \(10~\text{m/s}\). A plumb bob is suspended from the roof of the car by a light rigid rod of length \(1.00~\text{m}\). The angle formed by the rod with respect to the vertical is:
1. | zero | 2. | \(30^{\circ}\) |
3. | \(45^{\circ}\) | 4. | \(60^{\circ}\) |
A string of length L is fixed at one end and carries a mass M at the other end. The string makes 2/π revolutions per second around the vertical axis through the fixed end as shown in the figure, then tension in the string is
1. ML
2. 2 ML
3. 4 ML
4. 16 ML
A long horizontal rod has a bead which can slide along its length, and initially placed at a distance L from one end A of the rod. The rod is set in angular motion about A with constant angular acceleration . If the coefficient of friction between the rod and the bead is μ, and gravity is neglected, then the time after which the bead starts slipping is
1.
2.
3.
4. Infinitesimal