A particle moves in a circular orbit under the action of a central attractive force inversely proportional to the distance ‘r’. The speed of the particle is
1. Proportional to r2
2. Independent of r
3. Proportional to r
4. Proportional to 1/r
A 500 kg car takes a round turn of radius 50 m with a velocity of 36 km/hr. The centripetal force is
1. 250 N
2. 750 N
3. 1000 N
4. 1200 N
A stone of mass of 16 kg is attached to a string 144 m long and is whirled in a horizontal circle. The maximum tension the string can withstand is 16 Newton. The maximum velocity of revolution that can be given to the stone without breaking it will be-
1. 20 ms–1
2. 16 ms–1
3. 14 ms–1
4. 12 ms–1
A point mass \(m\) is suspended from a light thread of length \(l,\) fixed at \(O\), and is whirled in a horizontal circle at a constant speed as shown. From your point of view, stationary with respect to the mass, the forces on the mass are:
1. | 2. | ||
3. | 4. |
If a cyclist moving with a speed of 4.9 m/s on a level road can take a sharp circular turn of radius 4 m, then coefficient of friction between the cycle tyres and road is
1. 0.41
2. 0.51
3. 0.61
4. 0.71
A mass is supported on a frictionless horizontal surface. It is attached to a string and rotates about a fixed centre at an angular velocity ω0. If the length of the string and angular velocity are doubled, the tension in the string which was initially T0 is now
1. T0
2. T0/2
3. 4 T0
4. 8 T0
Three identical particles are joined together by a thread as shown in figure. All the three particles are moving in horizontal circles centred at O. If the velocity of the outermost particle is v0, then the ratio of tensions in the three sections of the string is
1. 3 : 5 : 7
2. 3 : 4 : 5
3. 7 : 11 : 6
4. 3 : 5 : 6
A coin, placed on a rotating turn-table slips, when it is placed at a distance of 9 cm from the centre. If the angular velocity of the turn-table is trippled, it will just slip, if its distance from the centre is
1. 27 cm
2. 9 cm
3. 3 cm
4. 1 cm
A car is moving in a circular horizontal track of radius \(10~\text{m}\) with a constant speed of \(10~\text{m/s}\). A plumb bob is suspended from the roof of the car by a light rigid rod of length \(1.00~\text{m}\). The angle formed by the rod with respect to the vertical is:
1. | zero | 2. | \(30^{\circ}\) |
3. | \(45^{\circ}\) | 4. | \(60^{\circ}\) |
A mass of 1 kg is suspended by a string A. Another string C is connected to its lower end (see figure). If a sudden jerk is given to C, then
1. The portion AB of the string will break
2. The portion BC of the string will break
3. None of the strings will break
4. The mass will start rotating