A ball is projected with velocity v0 at an angle of elevation 30°. Mark the correct statement.
(1) Kinetic energy will be zero at the highest point of the trajectory.
(2) Vertical component of momentum will be conserved.
(3) Horizontal component of momentum will be conserved.
(4) Gravitational potential energy will be minimum at the highest point of the trajectory.
Neglecting the air resistance, the time of flight of a projectile is determined by:
(1) Uvertical
(2) Uhorizontal
(3) U = U2vertical + U2horizontal
(4) U = U(U2vertical + U2horizontal )1/2
A stone is thrown at an angle θ with the horizontal reaches a maximum height of H. Then the time of flight of stone will be:
(1)
(2)
(3)
(4)
The horizontal range of a projectile is \(4 \sqrt{3}\) times its maximum height. Its angle of projection will be:
1. \(45^{\circ}\)
2. \(60^{\circ}\)
3. \(90^{\circ}\)
4. \(30^{\circ}\)
The maximum horizontal range of a projectile is \(400~\text{m}\). The maximum value of height(ever possible) attained by it will be:
1. \(100~\text{m}\)
2. \(200~\text{m}\)
3. \(400~\text{m}\)
4. \(800~\text{m}\)
Figure shows four paths for a kicked football. Ignoring the effects of air on the flight, rank the paths according to initial horizontal velocity component, highest first
(1) 1, 2, 3, 4
(2) 2, 3, 4, 1
(3) 3, 4, 1, 2
(4) 4, 3, 2, 1
A man standing on a road holds his umbrella at 30° with the vertical to keep the rain away. He throws the umbrella and starts running at 10 km/hr. He finds that raindrops are hitting his head vertically, the speed of raindrops with respect to the road will be:
(1) 10 km/hr
(2) 20 km/hr
(3) 30 km/hr
(4) 40 km/hr
A river is flowing from east to west at a speed of \(5\) m/min. A man on south bank of river, capable of swimming \(10\) m/min in still water, wants to swim across the river in shortest time. He should swim:
1. | Due north |
2. | Due north-east |
3. | Due north-east with double the speed of the river |
4. | None of the above |
A thief is running away on a straight road in a jeep moving with a speed of 9 m/s. A police man chases him on a motor cycle moving at a speed of 10 m/s. If the instantaneous separation of jeep from the motor cycle is 100 m, how long will it take for the policemen to catch the thief
(1) 1 second
(2) 19 second
(3) 90 second
(4) 100 second
A man sitting in a bus travelling in a direction from west to east with a speed of \(40\) km/h observes that the rain-drops are falling vertically downwards. To another man standing on ground the rain will appear:
1. | To fall vertically downwards |
2. | To fall at an angle going from west to east |
3. | To fall at an angle going from east to west |
4. | The information given is insufficient to decide the direction of the rain |