If each of the resistance of the network shown in the figure is R, the equivalent resistance between A and B is
1. 5 R
2. 3 R
3. R
4. R/2
Thirteen resistances each of resistance R ohm are connected in the circuit as shown in the figure below. The effective resistance between A and B is
1. 2R Ω
2.
3.
4. R Ω
For what value of unknown resistance X, the potential difference between B and D will be zero in the circuit shown in the figure
1. 4 Ω
2. 6 Ω
3. 2 Ω
4. 5 Ω
1. | 2. | ||
3. | 4. |
An unknown resistance R1 is connected in series with a resistance of 10 Ω. This combinations is connected to one gap of a metre bridge while a resistance R2 is connected in the other gap. The balance point is at 50 cm. Now, when the 10 Ω resistance is removed the balance point shifts to 40 cm. The value of R1 is (in ohm)
1. 60
2. 40
3. 20
4. 10
A wire has a resistance of 6 Ω. It is cut into two parts and both half values are connected in parallel. The new resistance is :
1. 12 Ω
2. 1.5 Ω
3. 3 Ω
4. 6 Ω
Six equal resistances are connected between points P, Q and R as shown in the figure. Then the net resistance will be maximum between
1. P and Q
2. Q and R
3. P and R
4. Any two points
The total current supplied to the circuit by the battery is:
1. \(1~\text{A}\)
2. \(2~\text{A}\)
3. \(4~\text{A}\)
4. \(6~\text{A}\)
An electric current is passed through a circuit containing two wires of the same material, connected in parallel. If the lengths and radii of the wires are in the ratio of 4/3 and 2/3, then the ratio of the currents passing through the wire will be
1. 3
2. 1/3
3. 8/9
4. 2
In circuit shown below, the resistances are given in ohms and the battery is assumed ideal with emf equal to \(3\) volt. The voltage across the resistance \(R_4\) is:
1. \(0.4\) V
2. \(0.6\) V
3. \(1.2\) V
4. \(1.5\) V