Four identical cells each having an electromotive force (e.m.f.) of 12V, are connected in parallel. The resultant electromotive force (e.m.f.) of the combination is :
1. 48 V
2. 12 V
3. 4 V
4. 3 V
A capacitor is connected to a cell of emf E having some internal resistance r. The potential difference in steady state across the
1. Cell is < E
2. Cell is E
3. Capacitor is > E
4. Capacitor is < E
A resistance of 4 Ω and a wire of length 5 metres and resistance 5 Ω are joined in series and connected to a cell of e.m.f. 10 V and internal resistance 1 Ω. A parallel combination of two identical cells is balanced across 300 cm of the wire. The e.m.f. E of each cell is:
1. 1.5 V
2. 3.0 V
3. 0.67 V
4. 1.33 V
In the circuit shown here, E1 = E2 = E3 = 2 V and R1 = R2 = 4 ohms. The current flowing between points A and B through battery E2 is
1. Zero
2. 2 amp from A to B
3. 2 amp from B to A
4. None of the above
The equivalent resistance between the points P and Q in the network given here is equal to (given ) :
1.
2. 1 Ω
3.
4. 2 Ω
The current in a conductor varies with time t as where I is in ampere and t in seconds. The electric charge flowing through a section of the conductor during t = 2 sec to t = 3 sec is :
1. 10 C
2. 24 C
3. 33 C
4. 44 C
A group of N cells whose emf varies directly with the internal resistance as per the equation EN = 1.5 rN are connected as shown in the figure below. The current I in the circuit is
1. 0.51 A
2. 5.1 A
3. 0.15 A
4. 1.5 A
As the switch S is closed in the circuit shown in the figure, the current passed through it is :
1. 4.5 A
2. 6.0 A
3. 3.0 A
4. Zero
In the circuit shown in figure reading of voltmeter is V1 when only S1 is closed, reading of voltmeter is V2 when only S2 is closed and reading of voltmeter is V3 when both S1 and S2 are closed. Then
1. V3 > V2 > V1
2. V2 > V1 > V3
3. V3 > V1 > V2
4. V1 > V2 > V3
The V-I graph for a conductor at temperature T1 and T2 are as shown in the figure. is proportional to :
(1)
(2)
(3)
(4)