What is the equivalent resistance between terminals \(A\) and \(B\) of the network?
1. | \(\dfrac{57}{7}~\Omega\) | 2. | \(8~\Omega\) |
3. | \(6~\Omega\) | 4. | \(\dfrac{57}{5}~\Omega\) |
The effective resistance between points \(P\) and \(Q\) of the electrical circuit shown in the figure is:
1. | \(\frac{2 R r}{\left(R + r \right)}\) | 2. | \(\frac{8R\left(R + r\right)}{\left( 3 R + r\right)}\) |
3. | \(2r+4R\) | 4. | \(\frac{5R}{2}+2r\) |
In the circuit element given here, if the potential at point B, VB = 0, then the potentials of A and D are given as
1.
2.
3.
4.
The current in a conductor varies with time t as where I is in ampere and t in seconds. The electric charge flowing through a section of the conductor during t = 2 sec to t = 3 sec is :
1. 10 C
2. 24 C
3. 33 C
4. 44 C
A group of N cells whose emf varies directly with the internal resistance as per the equation EN = 1.5 rN are connected as shown in the figure below. The current I in the circuit is
1. 0.51 A
2. 5.1 A
3. 0.15 A
4. 1.5 A
In the shown arrangement of the experiment of the meter bridge if AC corresponding to null deflection of galvanometer is x, what would be its value if the radius of the wire AB is doubled
1. x
2. x/4
3. 4x
4. 2x
Seven resistances are connected as shown in the figure. The equivalent resistance between A and B is
1. 3 Ω
2. 4 Ω
3. 4.5 Ω
4. 5 Ω
A battery of internal resistance 4Ω is connected to the network of resistances as shown. In order to give the maximum power to the network, the value of R (in Ω) should be :
1. 4/9
2. 8/9
3. 2
4. 18
In the circuit shown here, the readings of the ammeter and voltmeter are
1. 6 A, 60 V
2. 0.6 A, 6 V
3. 6/11 A, 60/11 V
4. 11/6 A, 11/60 V
Length of a hollow tube is 5m, it’s outer diameter is 10 cm and thickness of it’s wall is 5 mm. If the resistivity of the material of the tube is 1.7 × 10–8 Ω×m then the resistance of the tube will be :
1. 5.6 × 10–5 Ω
2. 2 × 10–5 Ω
3. 4 × 10–5 Ω
4. None of these